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Abstract

I introduce Generalized Quantile Local Projections (GQLP), a novel methodology for identifying

structural quantile impulse responses. Unlike existing methods that estimate conditional quantile

effects, GQLP identifies causal effects on unconditional quantiles while still exploiting controls for

identification. This distinction is crucial in macroeconomics. For instance, when studying output

growth, low unconditional quantiles correspond to actual recessions rather than merely periods of

lower-than-expected growth relative to control variables. I develop a general simulation algorithm to

recover true structural quantile responses in analytically intractable models. I conduct Monte Carlo

experiments demonstrating that GQLP successfully recovers structural quantile impulse responses,

whereas conventional conditional quantile methods can yield misleading conclusions in the presence

of control variables even when the true structural shock is observed. In a growth-at-risk application,

I show that financial risk shocks have strongly asymmetric effects. Using timing restrictions for

identification, I find that a one-standard-deviation credit shock reduces industrial production growth

by 2 percentage points in the lower tail versus 0.5 percentage points at the median. In other

words, GQLP reveals left-tail-to-median response ratios of four-to-one, double those found using

conventional Quantile Local Projections, indicating that standard methods underestimate the effect

of financial shock on downturns. These findings suggest that stabilizing financial conditions can

help prevent painful recessions without sacrificing growth during expansions.
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1 Introduction

Modern macroeconomics increasingly recognizes that shocks may affect the entire distribution

of economic outcomes, beyond just the mean, and in particular the tails of the distribution.

Explicit attention to tail risks has also become commonplace in policy. For instance, at the

September 2025 FOMC meeting, the Committee motivated a federal funds rate cut by noting

that “downside risks to employment have risen.”

To understand the drivers of tail risks, researchers increasingly use quantile regression

to measure how quantiles of the outcome distribution respond to shocks. However, a

methodological complication arises: the inclusion of control variables for causal identification

transforms the analysis from unconditional to conditional quantiles. This distinction is central

across many areas of macroeconomics. When studying fluctuations in output growth or

inflation, researchers are often interested in the drivers of extreme outcomes—such as recessions

or destabilizing inflationary episodes. Unconditional tail quantiles directly correspond to

these extreme outcome periods. In contrast, conditional tail quantiles correspond to periods

that are extreme relative to what the control variables predict and thus do not always map

onto actual crisis periods. For instance, a conditionally low quantile of output growth may

correspond to a period of underperforming growth given favorable economic conditions, yet

still occur during an expansion.

Quantile regression estimates coefficients using observations at specific quantiles of the

conditional outcome distribution. Adding controls changes that conditional distribution,

altering which observations are “local” to a given quantile and thereby shifting the estimated

coefficients. In linear regression, adding controls orthogonal to the treatment leaves average

treatment effects unchanged. However, in quantile regression even the addition of statistically

independent controls can change the estimated quantile treatment effects. This creates

a trade-off: unconditional quantiles without controls have clear economic interpretation

but potentially biased estimates; including controls helps achieve causal identification but

at the cost of shifting the analysis to conditional quantiles and thereby losing economic
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interpretability.

This paper develops a new methodology that resolves this tension between causal identifi-

cation and economically meaningful quantile interpretation. I introduce Generalized Quantile

Local Projections (GQLP), which build on the generalized quantile regression of Powell (2020),

the local projections approach of Jordá (2005), and the potential outcomes framework for time

series of Rambachan and Shephard (2021). GQLP explicitly distinguish treatment variables

(whose effects we seek to measure) from control variables (used solely for identification),

allowing estimation of causal effects on unconditional quantiles while still exploiting controls

for identification. Beyond disentangling the effect of including controls on identification

versus interpretation, GQLP has three additional advantages. First, the framework allows

to define quantile impulse responses (QIRs) as responses to one-off shocks, ensuring direct

comparability with conventional mean impulse responses. Second, it imposes no linearity

assumptions on the structural quantile function, accommodating complex nonlinear responses

that depend on both baseline and counterfactual treatment values. Third, while this paper

emphasizes identification through timing restrictions and control variables, the framework

naturally extends to instrumental variable designs.

Growth-at-risk (GaR) provides a natural application for GQLP. GaR is defined as the

fifth percentile (τ = 0.05 quantile) of future growth, representing a pessimistic scenario

that materializes five percent of the time. A large empirical literature documents that

financial conditions are key drivers of GaR (Adrian et al. 2019). This literature is primarily

focused on forecasting (Plagborg-Møller et al. 2020; Brownlees and Souza 2021; Chuliá

et al. 2024), with policymakers using declining GaR forecasts as early warnings of rising

distress in the economy (Prasad et al. 2019). Theoretical macrofinance models attribute the

heterogeneous effect of financial conditions on upside versus downside risk to occasionally

binding financial constraints, balance sheet interactions, and amplification mechanisms that

can endogenously cause occasional financial crises (He and Krishnamurthy 2019; Gertler et al.

2019; Brunnermeier and Sannikov 2014).

2



I identify the causal effects of financial risk shocks on the unconditional quantiles of

industrial production growth via timing restrictions, controlling for macroeconomic, financial,

and monetary policy variables. The results indicate large and persistent output losses in

low-growth environments, while effects at the median and upper quantiles are considerably

smaller. For example, a one-standard-deviation credit risk shock reduces growth by up to 2

percentage points in the lower tail, compared to approximately 0.5 percentage points at the

median. Relative to conventional Quantile Local Projections (QLP), GQLP estimates uncover

substantially stronger asymmetries between the lower tail and the median, with response

ratios of roughly four to one, compared to two to one under QLP. The difference arises

because QLP identifies effects on conditional quantiles, whereas GQLP recovers effects on

unconditional quantiles, preserving the interpretation of quantiles as corresponding to phases

of the business cycle. These results are in line with the fact that conditional quantile methods

may underestimate adverse impacts of financial shocks during economic stress periods. I

rationalize this finding in the Monte Carlo section using a nonlinear equilibrium model of

Gertler et al. (2019), where conditioning on bank sector health masks the asymmetry of

responses of quantiles of output growth to a capital quality shock.

To establish the theoretical foundation for quantile analysis, I prove a quantile invariance

theorem. The theorem states that any dependent process with a structural Wold representation

and Gaussian innovations features quantile impulse responses that are identical across all

conditional and unconditional quantiles and equal to the mean impulse response. This

means that interesting quantile dynamics require departures from linearity, Gaussianity, or

stationarity. To evaluate the GQLP framework in non-linear settings, I develop a general

algorithm to recover the true QIRs from simulating the model in cases where they are otherwise

analytically intractable. The algorithm generates potential outcomes by experimentally fixing

the treatment variable to values from a grid. Doing so over many histories of all other model

variables recovers the distribution of the potential outcomes. This enables computation of

the true value of the QIRs or other statistics of interest. This method follows directly from
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the definition of potential outcomes and is readily applicable to most structural models.

It remains computationally feasible for unconditional quantile responses since they require

perturbing only one variable at a time. Conditional quantile responses are substantially more

expensive to recover as each additional variable adds another dimension to the simulation

grid, causing an exponential increase in computation time.

I apply my simulation algorithm to both an endogenous volatility structural vector

autoregression (SVAR) and a nonlinear dynamic stochastic general equilibrium (DSGE)

model of Gertler et al. (2019). I show that in these models shocks have asymmetric effects

across the distribution, with responses differing substantially between upper and lower

quantiles. Moreover, the structural quantile functions exhibit nonlinear functional forms at

some horizons for some quantiles. I then compare the performance of QLP with GQLP in a

Monte Carlo study. Using the SVAR I show that GQLPs with timing restrictions produce

estimates equivalent to a regression on the unobservable structural shock only—a property

shared by standard SVARs and local projections but not by QLPs. This ensures GQLP-

estimated QIRs identify the causal effect of a structural shock to the treatment on the quantile

of the outcome. Using the DSGE model I demonstrate the importance of distinguishing

between conditional and unconditional quantile responses in structural models. I show that

GQLP and QLP without controls both capture unconditional effects of capital quality shocks

on output across all states of banking sector health. However, QLP with controls estimates

conditional responses within given states of financial vulnerability, suggesting symmetric

effects across quantiles and masking the amplified downside responses during financial crises.

Since capital quality shocks are independent, controls are unnecessary for identification, yet

researchers routinely include them with plausibly exogenous shocks. While this practice is

innocuous when studying average effects, it fundamentally alters the economic interpretation

of quantile effects.

This work contributes to several strands of literature. I extend the generalized quan-

tile regression of Powell (2020) from the cross-section quantile treatment effects literature
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(Chernozhukov and Hansen 2013; Angrist et al. 2006) to impulse response analysis. In doing

so, I build on the potential outcomes for time series framework (Rambachan and Shephard

2021; Angrist and Kuersteiner 2011; Angrist et al. 2018). The methodology advances the

local projections literature (Jordá 2005; Jorda and Taylor 2025) by enabling identification

of unconditional quantile impulse responses. By establishing a novel causal link between

financial risk shocks and the unconditional tail risks of output growth, I contribute to an

emerging empirical literature that studies the structural drivers of GaR (Adrian et al. 2020;

Adrian et al. 2022; Loria et al. 2025). My empirical findings can be rationalized by the

macrofinance literature (Kiyotaki and Moore 1997; Brunnermeier and Sannikov 2014; He

and Krishnamurthy 2019; Gertler et al. 2019) and are related to work on the cyclicality

of volatility and the skewness of macroeconomic variables (see Bloom (2014) for a general

review, and Cascaldi-Garcia et al. (2023) for a review of measures of uncertainty, volatility

and risk).

Various alternative definitions and estimators of quantile impulse responses exist in the

literature, but none addresses the fundamental challenge of identifying causal effects on

unconditional quantiles while using control variables for identification. The QLP framework

in Linnemann and Winkler (2016), Adrian et al. (2019), Adrian et al. (2022), Jordà et al.

(2022), and Bochmann et al. (2023) is the closest to my approach. This framework recovers

the QIR from local projection coefficients estimated using the quantile regression of Koenker

and Bassett 1978, with estimation done separately for each quantile and horizon. In the

absence of control variables, there is no difference between GQLP and QLP. Chavleishvili

and Manganelli 2024 achieve identification by imposing timing restrictions on a recursive

quantile vector autoregressive model. The reported QIRs assume a realization of a median

sample path for the shock variable over the response horizon. Montes-Rojas 2019 and Lee

et al. 2021 use a SVAR model to identify a structural shock since their multivariate quantile

models are reduced-form. The QIR proposed by Montes-Rojas 2019 describes the cumulative

impact of a series of shocks, not a one-off shock, because persistent realizations of lower (or

5



upper) quantiles are assumed in its construction. Han et al. 2022 and Jung and Lee 2022

study QIRs in models where the quantile itself is autoregressive, as in the CAViaR model

of Engle and Manganelli 2004. In the applied literature, Mumtaz and Surico 2015 estimate

structural QIRs of output growth in response to monetary policy shocks using the quantile

autoregressive-distributed lag model of Galvao et al. 2013. Loria et al. 2025 estimate QIRs

within a conventional local projections framework, but using as dependent variables the

fitted quantiles of year-ahead output growth obtained from a quantile regression on current

macro-financial conditions.

The remainder of the paper is structured as follows. Section 2 introduces the econometric

framework. Section 3 motivates the frameworks using a simulation study. Section 4 contains

the empirical analysis. Concluding remarks follow in Section 5.

2 Econometric framework

2.1 Potential Outcomes

My generalized quantile local projections (GQLP) framework builds upon the literature on

local projections (Jordá 2005), quantile treatment effects in the presence of covariates (Powell

2020), and potential outcomes for time series (Rambachan and Shephard 2021).

Let Yi,t denote a scalar outcome variable and Yj,t the scalar treatment variable, both of

which are part of a multivariate process Yt ∈ Rk. Let the vector Xt denote a finite history

subset of the sigma-algebra generated by Yt, i.e. Xt ⊂ FY
t where FY

t = σ
(
{Ys : s ≤ t}

)
. Let

the vector Wt ∈ Rk denote the assignments (or shocks in the terminology of macroeconomics).

Throughout, capital letters represent random variables, while lowercase letters denote the

fixed values these variables may take.

Following Rambachan and Shephard (2021) I define a potential outcomes process as a

multivariate time series process that satisfied assumptions 1 and 2.

Assumption 1 (Non-anticipating Potential Outcomes). For each t ≥ 1 and all sequences
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{ws}s≥1 and {w′
s}s≥1 in W,

Yt(w1:t, {ws}s≥t+1) = Yt(w1:t, {w′
s}s≥t+1) almost surely.

I thus denote the time-t potential outcome as Yt(w1:t), where Yt(w1:t) ∈ Y ⊆ Rk.

Assumption 2 (Sequentially Probabilistic Assignment Process). The assignment process

satisfies 0 < Pr(Wt = w | FY
t−1) < 1 almost surely for all w ∈ W. The probability structure is

determined by the filtered probability space generated by {Wt, {Yt(w1:t) : w1:t ∈ W t}}t≥1.

I focus on the dynamic effects on outcome variable i to a time t change in treatment

variable j, thus I use the shortcut notation:

Yi,t+h(wj) := Yi,t+h(W1:t−1,W1:j−1,t, wj,Wj+1:k,t,Wt+1:t+h).

Yi,t+h(wj) represents the potential outcomes that Yi,t+h would take had assignment Wj,t been

experimentally (exogenously) fixed to Wj,t = wj .
1 The potential outcome is a random variable

which depends on assignments up to time t+ h. The set of potential outcomes includes the

observed outcome, which in this shorter notation is denoted Yi,t+h ≡ Yi,t+h(Wj,t). Similarly, a

potential outcome can be defined in terms of experimentally fixing Yj,t = yj as Yi,t+h(yj), in

which case the observed outcome is Yi,t+h ≡ Yi,t+h(Yj,t).

Before moving on to identification of quantile impulse responses, it is instructive to

consider what assumptions are needed to identify the structural mean impulse response when

the assignments Wt are unobservable. This is a standard setting in macroeconomics, where

researchers often observe only a vector of endogenous variables Yt but not the underlying

assignmentsWt. The typical model used in such settings is the structural vector autoregression.

SVAR(1) assumes that the potential outcome process satisfies A0Yt(w1:t) = wt+A1Yt−1(w1:t−1).

1Throughout I focus on the potential outcomes for a fixed value value of a variable in time t. As such
the notation does not make explicit the fact that both the timing and the horizon of the treatment matter,
for instance Yi,t+h(wj) and Yi,(t+1)+(h−1)(wj) may differ even though both occur in period t+ h, because
Yi,t+h(wj) does not constrain the assignment in period t+ 1 to equal yj .
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The following assumptions are closely related but not identical to those used for identification

in the SVAR literature, and although they can be applied in the SVAR setting they are more

general and can be used to study identification in other (also nonlinear) settings.

Assumption 3 (Independent Assignments). Assignments are independent across time and

across units. That is, for all t ̸= s, Wt ⊥⊥ Ws, and for all i ̸= j, Wi,t ⊥⊥ Wj,t.

Assumption 4 (Deterministic Potential Outcomes). Potential outcomes Yt(w1:t) are deter-

ministic functions of the assignment sequence for all t ≥ 1 and w1:t ∈ W t.

Assumption 5 (Partial Invertibility). The outcome Yj,t is a function only of the structural

shock Wj,t and the time-t observables Xt, i.e., Yj,t = gj(Wj,t, Xt). Furthermore, the inverse

Wj,t = g−1
j (Yj,t, Xt) exists.

Assumption 3 ensures that the assignments can be interpreted as structural shocks. It is

a stronger version of the uncorrelatedness of structural shocks assumptions commonly used in

the SVAR literature (if structural shocks are Gaussian the two assumptions are equivalent).

Assumption 4 ensures that the potential outcomes (including the observed outcome) are

a function of past and present structural shocks only, i.e. there are no “external” sources

of randomness driving the potential outcomes. Assumption 5 ensures that although the

structural shock of interest Wj,t is not observed, it can be recovered from observable data.

This is a strong assumption, but it is weaker than the full invertibility assumption used in

the SVAR literature – which requires that all the structural shocks Wt can be recovered.

Note that assumptions 3 and 5 imply that Yi,t+h(yj) | Yj,t, Xt ∼ Yi,t+h(yj) | Xt. In other

words, since the treatment variable is assumed to be only a function of observables and

an independent assignment, by conditioning on the appropriate variables the treatment is

conditionally independent of the potential outcomes.

Theorem 1 (Impulse Response Identification with Unobservable Assignments). Under
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Assumptions 1 through 5, the causal marginal filtered treatment effect is identified as:

∂

∂yj
E[Yi,t+h | Yj,t = yj, Xt] = E

[
∂Yi,t+h(wj)

∂wj

·
∂g−1

j (yj, Xt)

∂yj
| Xt

]
.

Theorem 1 is similar to the theorem 10 in Rambachan and Shephard (2021), except that

the addition of the partial invertibility assumption 5 makes the interpretation of the identified

impulse response more straightforward as it measures the causal effect of an intervention to a

single scalar assignment rather than the effect of “simultaneously shifting all assignments

from time t = 1 to t”. The proof of theorem 1 is in the appendix section A1.1. This theorem

says that the structural impulse response can be identified without having to observe Wj,t.

Moreover, it takes a particularly simple form made up of two terms, where the second term

∂g−1
j (yj ,Xt)

∂yj
does not depend on the horizon of the response nor the dependent variable and is

a constant in linear settings. In particular, in a SVAR it is easy to show that
∂g−1

j (yj ,Xt)

∂yj
= 1

and in Local Projections settings it can be normalized to 1 as outlined in Plagborg-Møller

and Wolf (2021).

2.2 Quantile Impulse Response definition

In what follows, I will assume that for a fixed treatment yj and for each horizon h, Yi,t+h(yj)

has a structural quantile function (SQF) denoted qh(τ | yj). Notably, covariates Xt do not

enter into this SQF, which distinguishes it from the conditional covariates SQF denoted

qh(τ | yj, x).

Assumption 6 (Structural Quantile Function). For each Yi,t+h(yj), there exists a structural

quantile function qh(τ | yj) that is non-decreasing and left-continuous in τ ∈ [0, 1].

Assumption 6 implies that the structural quantile function exists and does not change with

time, ruling out models that feature structural breaks or other violations of stationarity. Each
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potential outcome can be related to its structural quantile function as follows:

Yi,t+h(yj) = qh(Ui,t+h(yj) | yj), Ui,t+h(yj) ∼ Uniform[0, 1].

Ui,t+h(yj) is responsible for heterogeneity of outcomes among time periods with the same

treatment yj. I refer to it as a rank variable as it determines the placement in the h-periods-

ahead outcome distribution for a given treatment yj. Ui,t+h(yj) contains information up to

time t+ h.

The goal of this paper is to identify the structural quantile impulse response, defined as:

QIRτ (h) =
∂qh(τ | yj)

∂yj
. (1)

If the SQF is linear i.e. qh(τ | yj) = αh(τ) + βh(τ)yj, then the QIRτ (h) = βh(τ) does not

depend on yj. I discuss whether linearity of the SQF can be justified later. Importantly, I

contrast this definition with the structural conditional quantile impulse response defined as:

cQIRτ (h) =
∂qh(τ | yj, x)

∂yj
. (2)

The QIR and the cQIR may differ even if the treatment and control variables are independent

(Yj,t ⊥⊥ X ′
t). Furthermore, the same observation Yi,t+h might fall below qh(τ | yj, x) but above

qh(τ | yj) or vice versa.

The structural mean impulse response can be defined as:

IR(h) =
∂E[Yi,t+h(yj)]

∂yj
, (3)

and the structural conditional mean impulse response can be defined as:

cIR(h) =
∂E[Yi,t+h(yj, x)]

∂yj
, (4)
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The expectation and quantile operators have different mathematical properties, which

is why quantile and mean impulse responses behave differently under conditioning. To

illustrate this, consider a simple data generating process: Y = X1 ·W +X2, where X1, X2

and W are all independently and identically distributed uniform random variables with W

representing an unobserved shock. The linearity of the expectations operator means that

E[Y | x1] = x1 · E[W ] + E[X2] and E[Y | x1, x2] = x1 · E[W ] + x2. After taking the partial

derivative with respect to x1, both expressions yield E[W ] making the IR and cIR identical.

This result generalizes to any model where the treatment variable and other covariates

enter additively2, the linearity of expectations ensures that the additive component drops

out when computing partial derivatives, regardless of whether it is conditioned on or not.

In contrast, qA+B(τ) ̸= qA(τ) + qB(τ) for random variables A and B unless A and B are

comonotonic (Koenker 2005). After conditioning on both X1 and X2 they become constants,

so qY (τ | x1, x2) = qx1W+x2(τ) = x1 · qW (τ) + x2 by the affine property of quantiles. Taking

the partial derivative with respect to x1 then yields ∂qY (τ |x1,x2)
∂x1

= qW (τ). However, after

conditioning on X1 = x1 only, the conditional quantile qY (τ | x1) cannot in be written in

separable form. Thus, the derivative ∂qY (τ |x1)
∂x1

=
∂qx1·W+X2

(τ)

∂x1
depends on the distribution of the

random variable x1 ·W +X2 and differs from the conditional case. In effect, the coefficients

on X1 from quantile regressions on X1 only versus on X1 and X2 will differ, even though

X1 and X2 are independent. Adding covariates that are uncorrelated with the treatment to

conditional mean models never changes the coefficient on the treatment variable as per the

Frisch-Waugh-Lovell theorem, but this theorem does not apply to quantile regression.

Comparing equations 1 and 3, the QIR and mean impulse response share the same

structure but target different aspects of the outcome distribution. While the mean impulse

response captures how treatment affects the expected value, the QIR describes how treatment

affects specific quantiles. Both the QIR and IR should be interpreted as responses to shocks

that cause a one-off time-t unit change in the treatment variable, consistent with the local

2In models where the covariates do not enter linearly, Generalized IR functions that are a function of the
covariates are needed and a simple linear model is misspecified.

11



projections literature. This interpretation differs slightly from SVAR impulse responses,

which measure responses to unit variance innovations, so comparisons with SVAR impulse

responses require scaling by an appropriate constant of proportionality (Plagborg-Møller and

Wolf 2021).

A word of caution is in order when dealing with cumulative quantile impulse responses. To

calculate cumulative impact on growth in the level of the variable of interest (e.g. Industrial

Production IPt) using local projections, the outcome variable is usually transformed to

Yi,t+h = log(IPt+h) − log(IPt−1). This is also the transformation used in this paper. This

transformation is innocuous in the case of the mean impulse response as linearity of the

expectations operator ensures that the cumulative effect equals the sum of period-by-period

effects. However, quantiles of sums generally do not equal sums of quantiles. For example,

the effect on the median annual growth rate will not generally equal to the sum of the

effects on the 12 consecutive median monthly growth rates. Therefore, when Yi,t+h represents

cumulative growth, the quantile impulse response describes how treatment affects the τ

quantile of the h-periods-ahead cumulative growth distribution, not the sum of consecutive

period effects.

To motivate QIR analysis it is instructive to discuss in what class of models the QIR is

not equal to the mean impulse response. In particular, I state a quantile invariance result

that proves that in a rich class of models quantile impulse responses are the same for each

conditional and unconditional quantile and equal to the mean impulse response. This result is

useful for two reasons. First, it establishes a lower bound on model complexity necessary for a

model to exhibit non-trivial quantile dynamics. This has implication for theorists interested in

writing models which feature interesting quantile impulse responses consistent with empirical

evidence. Second, it cautions against overly restrictive identifying assumptions for quantile

impulse response identification, as that could lead to a paradox in which identification relies

on assumptions that imply quantile invariance.
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Suppose the process Yt ∈ Rk admits a structural Wold representation of the form

Yt =
∞∑
j=0

ΨjWt−j,

where Wt ∈ Rk are orthogonal innovations satisfying E[Wt] = 0, E[WtW
′
t ] = 1, and

E[WtW
′
s] = 0 for all t ≠ s. The marginal treatment effect of a shock in variable j at

time t on variable i at horizon h is then

∂E[Yi,t+h(wj)]

∂wj

= [Ψh]i,j.

Additionally assuming Gaussian innovations, i.e. Wt ∼ N (0, 1), implies that the components

of Wt are independent over time and across variables.

Theorem 2 (Quantile Invariance Theorem). If {Yt} has a structural Wold representation

with Gaussian innovations, then for all quantiles τ ∈ (0, 1) and all horizons h,

cIR(h) = IR(h) = QIRτ (h) = cQIRτ (h)

As any purely nondeterministic, zero-mean covariance stationary process has a Wold

representation, and since invertibility means it is possible to orthogonalize innovations, the

most restrictive assumption in Theorem 2 is the Gaussianity of innovations. Critically, if the

underlying data-generating process is non-linear, it may not admit a Wold representation

with Gaussian innovations even if the structural shocks driving the process are Gaussian.

For instance, processes with stochastic volatility (like the example in section 3.1) have

Wold representations but with non-Gaussian innovations. As such, Theorem 2 tells us that

breaking quantile invariance requires either departures from Gaussian innovations, linearity

or covariance stationarity. However, these departures are not sufficient conditions for quantile

non-invariance. For instance, non-Gaussian but i.i.d. symmetric innovations in a linear
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process may still exhibit identical responses across quantiles. The proof of Theorem 2 follows

from the linearity of the Wold representation and the independence of Gaussian innovations.

The full proof is in Appendix A1.2.

2.3 Quantile Impulse Response identification

If the observed treatment Yj,t is randomly assigned i.e. Ui,t+h(yj) | Yj,t ∼ Ui,t+h(yj) ∼

Uniform[0, 1], then a quantile local projection model Yi,t+h = qh(Ui,t+h | Yj,t) estimated using

a standard quantile regression restriction P (Yi,t+h ≤ qh(τ | Yj,t) | Yj,t) = τ identifies the

QIR as defined in equation 1. In non-experimental settings typical in macroeconomics, an

endogeneity problem arises because the realized treatment Yj,t is not randomly assigned. I

address the endogeneity problem with an identification by controls strategy. In particular,

I relax the assumption that Ui,t+h(yj) | Yj,t ∼ Ui,t+h(yj) and replace it with Ui,t+h(yj) |

Yj,t, Xt ∼ Ui,t+h(yj) | Xt.
3 In other words, I assume that the treatment is conditionally

on (observable) controls randomly assigned. Consistent with assumption 5, I think of the

observed treatment as a function of the observable controls and an unobserved structural

shock Wj,t, i.e. Yj,t = gj(Xt,Wj,t). As such the object of causal analysis is the quantile

impulse response to a structural shock to the treatment variable.

The Frisch-Wough-Lovell theorem does not apply to quantile regression making disentan-

gling effect of controls on identification versus interpretation more difficult. In particular,

the quantile local projections model with controls Yi,t+h = qh(U
∗
i,t+h | Yj,t, Xt) estimated

using a restriction P (Yi,t+h ≤ qh(τ | Yj,t, Xt) | Yj,t, Xt) = τ deals with the endogeneity issue,

but estimates a different structural function qh(τ | yj, x) instead of qh(τ | yj). As such it

estimates the cQIR defined in equation 2 instead of the QIR defined in equation 1. The

addition of controls into the equation changes the interpretation of the model. As such,

even in cases when the treatment is randomly assigned, inclusion of control variables could

3Note that this allows for the rank variable to have different distributions for different values of the controls
Xt. I.e. the controls can help predict whether the outcome will be below/above its conditional (on treatment)
quantile.
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change the quantile regression coefficients on the treatment variable. Note also that the

conditional on controls rank variable U∗
i,t+h(yj, x) is distinct from Ui,t+h(yj). In particular,

Ui,t+h(yj) = λ(Xt, U
∗
i,t+h(yj, x)) for some function λ that depends on the fixed treatment and

the horizon, but not time.

Exploiting control variables for causal identification while still modeling the conditional

on treatment only SQF qh(τ | yj) is possible thanks to the Powell 2020 generalized quantile

regression estimator, which explicitly distinguishes between treatment and control variables.

One of the contributions of this paper is to adapt this cross-sectional framework to the

time-series setting. In what follows I only consider identification by controls, Powell 2020

also considers identification using instrumental variables making extension of GQLP to

instrumental variable designs straightforward. To identify quantile impulse responses one

more assumption is needed:

Assumption 7 (Rank Similarity). For all yj, y
′
j: P[Yi,t+h(yj) ≤ qh(τ | yj) | Yj,t, Xt] =

P[Yi,t+h(y
′
j) ≤ qh(τ | y′j) | Yj,t, Xt].

The rank similarity assumption 7 posits that, conditional on current observables the rank

of the potential outcome within its distribution does not systematically vary with different

realizations of the treatment variable. In other words, if we know the current treatment

and controls, whether a time period would have a high-rank or low-rank outcome does not

depend on which treatment value we are considering. For example, if economic conditions

suggest a period would experience an above-median outcome given one treatment value, those

same conditions suggest it would also experience an above-median outcome for a different

treatment value (though the median levels themselves would differ). It is a key assumption

for identification, along with assumptions 3 and 5, which taken together establish conditional

(on controls) independence of the treatment assignment.

Before stating the moment conditions used to recover the QIR, I reformulate the Theorem

1 from Powell 2020 except in the time series setting. The proof of the theorem is in the

appendix section A1.3.
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Theorem 3. Suppose Assumptions 1 through 7 hold ∀h, then ∀h ∈ {0, 1, 2, . . . , H} and for

each τ ∈ (0, 1):

P[Yi,t+h ≤ qh(τ | Yj,t) | Yj,t, Xt] = P[Yi,t+h ≤ qh(τ | Yj,t) | Xt],

P[Yi,t+h ≤ qh(τ | Yj,t)] = τ.

The first equation in theorem 3, states that after conditioning on controls Xt, the

treatment Yj,t does not provide additional information about the probability that the outcome

is below its quantile function. The second equation in theorem 3, ensures that the quantile

function is correctly scaled. Together, these equations imply that the conditional probability

P[Yi,t+h ≤ qh(τ | Yj,t) | Xt] is allowed to vary based on controls Xt, but in expectation

it is equal to the quantile level τ . When there are no control variables in the model (i.e.

Xt = 0), the two conditions in theorem 3 collapse into one standard quantile regression

restriction P[Yi,t+h ≤ qh(τ | Yj,t) | Yj,t] = τ . This restriction is used to estimate QIRs in

the quantile local projections framework. As such, quantile local projections are a special

case generalized quantile local projections, corresponding to a setting where all the model

variables are treatment variables and there are no controls. Therefore, GQLP “nests” the

QLP framework.

Theorem 3 provides the moment conditions needed for the estimation of the generalized

quantile local projections. In particular, it implies two moment conditions for each horizon

h ∈ {0, 1, 2, . . . , H} and quantile τ of interest:

E
[
Yj,t[1{Yi,t+h ≤ qh(τ | Yj,t)} − P(Yi,t+h ≤ qh(τ | Yj,t) | Xt)]

]
= 0,

E
[
1{Yi,t+h ≤ qh(τ | Yj,t)} − τ

]
= 0,

where 1{} is the indicator function that equals 1 if the condition in braces is true and 0

otherwise. Estimation is done separately for each horizon h and each τ as in the quantile local

projections. For a given h and τ and assuming a linear specification qh(τ | yj) = αh(τ)+βh(τ)d,

estimation proceeds in three steps:
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1. Postulate a candidate β̃h(τ). For each candidate β̃h(τ) there exists an intercept α̃h(τ)

such that P(Yi,t+h ≤ α̃h(τ) + β̃h(τ)Yj,t) = τ . This means that we need to search over the

slope coefficients only.

2. Given the pair (α̃h(τ), β̃h(τ)), estimate a linear probability model (Logit or Probit could

also be used) for the event that Yi,t+h ≤ α̃h(τ) + β̃h(τ)Yj,t as a function of controls Xt.

Save the predicted probabilities as τ̂Xt .

3. β̂h(τ) = argminβ̃h(τ)
g′Ag, where g = 1

T

∑T
t=1 Yj,t[1{Yi,t+h ≤ α̃h(τ) + Yj,tβ̃h(τ)} − τ̂Xt ].

A = [Ê(gg′)]−1 is the optimal GMM weighting matrix constructed using starting values

from standard quantile regression of Yi,t+h on Yj,t.

Note that misspecification in the binary outcome model of step 2 does not pose issues for

identification, as long as the misspecifcation errors are orthogonal to the treatment variable.

For more details about the estimation algorithm I refer the reader to Powell 2020.

I calculate confidence intervals using moving block bootstrap, the description of the

algorithm is in the appendix section A2. This procedure preserves the time-dependency

by resampling blocks of M consecutive observations instead of resampling individual time

points (Kilian and Lütkepohl 2017). After re-estimating the model B times using these

pseudo-samples, the confidence intervals are based on the distribution of the estimated

parameters across the B replications of the procedure. I test the coverage of the confidence

intervals obtained using this method in the Monte Carlo study in section 3.1.
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3 Monte Carlo

3.1 Endogenous Volatility SVAR

Consider a SVAR(1) augmented by an endogenous volatility term:

Yi,t = a1,11Yi,t−1 + a1,12Yj,t−1 +
1 + ϕ

√
exp(Yj,t−1)

1 + ϕ
Wi,t

Yj,t + a0,22Yi,t = a1,21Yi,t−1 + a1,22Yj,t−1 +Wj,t

Where, Wi,t,Wj,t
iid∼ N(0, 1) are unobserved independent structural shocks. If parameter

ϕ = 0 the model collapses to a standard SVAR with Yi,t ordered first (Yi,t predetermined with

respect to Yj,t). When ϕ > 0 the stochastic endogenous volatility term
√

exp(Yj,t−1) creates

a relationship between Yj,t−1 and the volatility of Yi,t. This generates volatility dynamics that

give rise to a skewed ergodic distribution of Yi,t and QIRs that vary across quantiles. The

mean impulse responses in this model do not depend on the value of the volatility parameter

ϕ, they are the same as in the linear SVAR (case when ϕ = 0).

parameter a1,11 a1,22 a1,12 a1,21 a0,22 ϕ
value 0.5 -0.1 -0.25 -0.1 -0.2 4

Table 1: Model parameters used in the simulation.

Although this is not an economic model, to keep the discussion less abstract, think of Yi,t

as output growth and Yj,t as the change in financial conditions (with positive values meaning

tightening financial conditions). Thus, if ϕ > 0 tightening financial conditions lead to an

increase in the volatility of output growth. This endogenous volatility together with the

negative relationship between the two variables generates an output growth distribution that

is left skewed, consistent with empirical evidence.

To study the cumulative impulse responses of the level of output I define a transformed

dependent variable Y c
i,t+h ≡

∑h
j=0 Yi,t+j. The structural mean impulse responses can be

identified using local projections with appropriate timing restrictions (Jordá 2005; Plagborg-
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Møller and Wolf 2021). Estimating by least squares separately for each h ∈ {1, 2, . . . , H}:

Y c
i,t+h = αh + Yj,tβh +X⊤

t θh + εi,t+h

with Xt = {Yi,t, Yj,t−1, Yi,t−1}, βh recovers the structural mean impulse response. I know

which variables need to be included in Xt from looking at the equation for Yj,t in the data

generating process and using the fact that Yj,t = gj(Xt,Wj,t). The inclusion of the controls

vector Xt is necessary as Yj,t is endogenous. Failing to include the correct variables in Xt

would result in biased estimates of the impulse response. If the structural shock Wj,t were

directly observable, replacing Yj,t with Wj,t as the treatment variable would identify the

structural impulse response without the need for controls Xt (although their inclusion may

still be desirable to improve the precision of the estimates).

When interest lies in identifying the QIR as defined in equation 1, employing the Koenker

and Bassett 1978 estimator in a local projections setting might not be enough. Firstly, a

linear quantile regression may be misspecified if the functional form of the SQF qh(τ | yj)

is not linear. In short time-series typical in macroeconomics, nonparametric estimation of

the SQF may be unfeasible, especially for more extremes quantiles. For a given model for

the underlying data generating process we can try to characterize the implied functional

form of qh(τ | yj). Depending on the model, a closed-form solution for the SQF may be hard

to find from the model’s equations. For example, a linear SVAR model (case when ϕ = 0)

has linear SQFs for endogenous variables to structural shocks. Furthermore, SVAR quantile

impulse responses equal to the mean impulse response for all quantiles. On the other hand,

the stochastic volatility SVAR (ϕ > 0) which features non-trivial QIRs – ones that vary with

depending on the quantile τ – also features nonlinear SQFs for some quantiles and horizons.

Even if the model implied SQF might be hard to characterize in closed-form, the shape of

the SQF can be recovered from simulating the model.

The simulation algorithm follows from the definition of potential outcomes and the SQF.

Potential outcomes can be generated based on either assignment counterfactuals Yi,t+h(wj) or
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Figure 1: Simulation results for the first horizon SQF q1(τ | yj). The top-left panel plots
the simulated quantiles of potential outcomes Y c

i,t+1(yj) over a grid of values yj for quantiles
τ ∈ {0.1⋄, 0.5◦, 0.9△} (obtained from MC = 100,000 simulation repetitions). The other two
panels re-plot these simulated quantiles, with the overlayed solid lines showing the fitted
SQF using a quantile regression of Y c

i,t+1 on the structural shock Wj,t for the same three
quantiles. The fit in the top-right panel comes from a linear quantile regression while the
bottom panel fit comes from a quadratic quantile regression. The regression coefficients used
to plot the fitted SQFs are averaged estimates from a Monte Carlo simulation with MC = 100
replications and time-series of length T = 500 (after dropping 1,000 initial observations).

counterfactuals relating to a realization of another endogenous variable Yi,t+h(yj). The first

method involves letting the model run for a number of periods before fixing the structural
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shock in one period to Wj,t = wj for a grid of values, then simulating forward for each wj

grid value and computing the empirical quantiles of Yi,t+h(wj). This recovers the quantile of

the potential outcomes Yi,t+h(wj) as a function of the fixed assignment wj , i.e. the SQF. The

second method is the same except it requires forcing the endogenous variable to take a value

Yj,t = yj , which — to remain consistent with the structural equations — requires choosing the

shock value that solves the structural mapping yj = gj(wj, Xt) by setting wj = g−1
j (yj, Xt).

Intervening on Yj,t and intervening on Wj,t are conceptually equivalent, in that an

intervention on one can be expressed as an intervention on the other through the inverse

mapping g−1
j . When the function gj is linear (as in the current example) the mapping

becomes particularly simple. In particular, if gj(Wj,t, Xt) = θ(Xt) + κWj,t with κ ̸= 0.

Solving for the shock gives Wj,t = g−1
j (Yj,t, Xt) = κ−1[Yj,t − θ(Xt)], so Yj,t = yj is equivalent

to setting Wj,t = wj = κ−1[yj − θ(Xt)].. Equivalently, compared to an unperturbed draw

{Xt,Wj,t} that produced Yj,t = θ(Xt)+κWj,t, the required additive perturbation in the shock

is δ = κ−1[yj − Yj,t]. In the current example that features an additive unit-slope (κ = 1) this

further reduces to δ = yj − Yj,t, so fixing Yj,t = yj is exactly the same as perturbing Wj,t by

adding δ = yj − Yj,t. For nonlinear but invertible gj the same conceptual equivalence holds

(interventions map into one another via g−1
j ), but the mapping need not be an additive shift

and must generally be computed pointwise for each Xt.

The top-left panel of Figure 1 shows the first horizon SQFs for three quantiles τ ∈

{0.1, 0.5, 0.9}, recovered from simulations based on experimentally fixing Yj,t = yj for a

grid of values for yj. Visual examination suggests that the SQF is quadratic for quantiles

τ ∈ {0.1, 0.9} and linear for the median τ = 0.5. In a simulation setting, the structural

shock Wj,t is observable and statistically independent by construction. This suggest another

strategy to recover the true SQF by estimating a quantile local projection model Y c
i,t+h =

qh(Ui,t+h | Wj,t). Again, this requires either the knowledge of the functional form of the

SQF, or the use of some nonparametric method to approximate it. Alternatively, we could

(incorrectly) assume a linear specification, which although misspecified may nevertheless
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be a good approximation to the truth4. Figure 1 shows that a linear quantile regression

Y c
i,t+1 = α(Ut+1)+β(Ut+1)Wj,t does well at approximating the true SQF around Wj,t = 0, but

is outperformed by a quadratic specification. If the nonlinearity of the quantile function is of

primary concern, higher order polynomial approximations could be used. Visual inspection

of the SQF for the first horizon response in Figure 1 suggests a quadratic specification is

sufficient. Fortunately, local projections are flexible making it is easy to add higher order

terms into the estimation equation.

Outside of simulation settings, the structural shocks Wj,t are usually unobserved, so

researchers need to rely on the time-series of the endogenous model variables {Yt, Xt} to

estimate the SQF. Figure 2 compares the performance of three quadratic models for the

estimation of the true SQF at horizon h = 1. The first is a model without controls estimated

using quantile regression given by:

Y c
i,t+1 = αh=1(Ut+1) + β1,h=1(Ut+1)Yj,t + β2,h=1(Ut+1)Y

2
j,t.

The second model adds controls Xt into the estimation equation and uses the quantile

regression to estimate the parameters.

Y c
i,t+1 = αh=1(Ut+1) + β1,h=1(Ut+1)Yj,t + β2,h=1(Ut+1)Y

2
j,t +X⊤

t θh=1(Ut+1).

The third model also estimates the quadratic equation, but uses the controls Xt for iden-

tification, while modeling the quadratic SQF that is not conditional on controls. This is

possible as my framework uses the generalized quantile regression of Powell 2020 instead of

the quantile regression of Koenker and Bassett 1978.

Comparing the performance of these three models in recovering the SQF shows that the

standard quantile regression is unable to recover the true shape of the SQF. The quantile

regression model without controls suffers from endogeneity bias, while the quantile regression

4Angrist et al. 2006 study the properties of Quantile Regression under misspecification and show that it
minimizes a weighted mean-squared error loss function for specification error.
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Figure 2: Simulation results for the first horizon SQF q1(τ | yj). The diamonds, circles and
triangles are the same across the three panels and show the simulated quantiles of potential
outcomes Y c

i,t+1(yj) over a grid of values yj for quantiles τ ∈ {0.1⋄, 0.5◦, 0.9△}(obtained
from MC = 100,000 simulation repetitions). The three panels compare the performance
of three estimators for the first horizon SQF. QR refers to the Koenker and Bassett 1978
estimator, GQR is the generalized quantile regression estimator introduced by Powell 2020.
The regression coefficients used to plot the fitted SQFs are averaged estimates from a
MC = 1,000 simulation replications and time-series of length T = 500 (after dropping 1,000
initial observations).

model with controls estimates a conditional SQF. On the other hand, the generalized quantile

regression estimator targets the correct (unconditional on controls) SQF, while simultaneously
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being able to address the endogeneity of the treatment in a controls-based identification

strategy.
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Figure 3: Simulation results for the cumulative quantile impulse response. The diamonds
⋄, circles ◦ and triangles △ are the same across the three panels and show the (linear
approximation to the) true quantile impulse response as estimated by Y c

i,t+h = αh(Ui,t+h) +
βh(Ui,t+h)Wj,t, for quantiles τ ∈ {0.1⋄, 0.5◦, 0.9△}. Solid lines show the results from the three
estimators considered. QLP refers to the quantile local projection framework which uses the
Koenker and Bassett 1978 estimator. GQLP is my local projections based framework which
builds on the generalized quantile regression estimator introduced by Powell 2020. Results
are averaged over MC = 1,000 simulation replications, with a time-series of length T = 500
(after dropping 1,000 initial observations). Y-axis plots β̂h(τ) and x-axis shows the horizon h.
Shaded areas show the Monte Carlo standard error of the estimator equal to the estimate ±
one standard deviation across the MC = 1,000 Monte Carlo iterations.

Since nonlinear SQFs imply that the QIRs will vary not only with the quantile but

also with value of the treatment variable, they make plotting and analyzing the QIRs more
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complicated. Thus for the sake of simplicity, a linear model may be deemed preferable even

if it is misspecified. Ignoring the nonlinearity of the SQF for the moment, an approximation

to the QIR can be recovered as the βh from the quantile local projection:

Y c
i,t+h = αh(Ui,t+h) + βh(Ui,t+h)Wj,t.

This simple strategy is possible in a simulation setting where the true structural shock

Wj,t is observable and by construction independent (Ui,t+h | Wj,t ∼ Ui,t+h), making controls

redundant for causal identification. A reasonable goal for an estimator of a structural QIR

would be to recover the same QIR using only the time-series of the observed endogenous

model variables {Yi,t, Yj,t}, similarly to how local projections identify the structural mean

impulse response when the correct set of controls is included. Figure 3 shows that quantile

local projections fail at achieving this goal.5 In particular, a quantile local projection model

without controls:

Y c
i,t+h = αh(Ui,t+h) + βh(Ui,t+h)Yj,t,

suffers from endogeneity of Yj,t and as expected it fails to recover the structural QIR. Perhaps

more surprisingly, a quantile local projection with the correct controlsXt = {Yi,t, Yj,t−1, Yi,t−1},

given by:

Y c
i,t+h = αh(Ui,t+h) + βh(Ui,t+h)Yj,t +X⊤

t θh(Ui,t+h),

solves the endogeneity of Yj,t problem, but in doing so models a conditional on controls SQF

which has a different meaning than the conditional on treatment only SQF. In effect, it

recovers the cQIR rather than the QIR, which in this case are not equal.

The GQLP estimator models the unconditional SQF, while still addressing the endogeneity

of Yj,t. As such, GQLP with the dependent variable Y c
i,t+h, treatment variable Yj,t and controls

Xt = {Yi,t, Yj,t−1, Yi,t−1} recovers the same QIRs as the (unfeasible in practice) QLP of Y c
i,t+h

5In the appendix section A3, I provide a table that compares the mean bias and root mean squared error
of the three estimators up to horizon 10, to complement Figure 3.
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on the structural shock Wj,t. Shaded areas on Figure 3 plot the Monte Carlo standard errors

of the estimators. It is clear from the plot that GQLP suffers from slightly higher estimation

uncertainty than QLP at the short horizons, at which QLP is also biased. Meanwhile, at

longer horizons where both estimators recover the unbiased effect, the standard errors are

almost identical.

Nominal Level
Quantile Horizon 68 % 90 % 95 %

0.1
1 71% 89% 94%
5 68% 91% 96%
10 70% 89% 94%

0.5
1 67% 92% 95%
5 69% 90% 95%
10 70% 91% 95%

0.9
1 68% 88% 93%
5 70% 89% 96%
10 72% 91% 96%

Average coverage 69.4% 90.0% 95.0%

Table 2: The table reports the coverage of moving block bootstrap confidence intervals
for three quantiles, three horizons and three nominal confidence levels. The coverage was
computed in a Monte Carlo simulation with MC = 500 repetitions, with sample size T = 500
and B = 1000 Bootstrap repetitions. The block size used in the bootstrap procedure was the
same as in the empirical results section and equal to m = 7.

Table 2 reports the coverage of the moving block bootstrap confidence intervals (CIs) for

three horizons h ∈ {1, 5, 10} for the GQLP estimator. The algorithm used to compute the

CIs, for which coverage is reported here, is the same as the one used in the empirical section

and is described in the appendix section A2. Coverage was calculated by computing the CIs

for the QIR at three selected horizons and three quantiles of interest τ ∈ {0.1, 0.5, 0.9} over

500 Monte Carlo simulation repetitions, and then recording the percentage of repetitions in

which the true value of the estimator lay inside the CI. If the confidence intervals are correctly

sized, the coverage should be close to the nominal level. The results in Table 2 suggest that

the bootstrap confidence intervals are indeed correctly sized. The small deviations from the

nominal levels are well within the Monte Carlo uncertainty (approximately ±4 pp at 68%,
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±2 pp at 90%, and ±2 pp at 95%). Moreover, the average coverage across quantiles and

horizons is essentially equal to the nominal levels, further confirming that the intervals are

appropriately calibrated.

3.2 Nonlinear DSGE model

“AMacroeconomic Model with Financial Panics” of Gertler et al. (2019) is a fully micro-founded

nonlinear DSGE model that features bank panics and financial accelerator mechanisms. It is

solved globally and so it can be used as a nonlinear data generating process by sampling random

innovations. In the model households and bankers interact through capital accumulation,

adjustment costs, and an agency problem. Households can invest and manage capital but

incur convex adjustment and management costs; bankers finance their operations with their

net worth and household deposits, but face diversion risk and potential bankruptcy if their net

worth turns zero or negative. The only exogenous uncertainty in the model is a capital-quality

shock, while endogenous bank runs are triggered by sunspot disturbances whenever liquidation

prices fall sufficiently—reflecting households’ relative inefficiency at managing capital—to

push bank net worth below zero. Although the steady-state is free of bank runs, a sequence

of adverse capital-quality shocks can erode net worth and open the door to panic equilibria.

This is illustrated on Figure 4, which shows how the economy affected by a sequence of

negative capital-quality shocks can move from the steady state to a bank-run equilibrium if a

sunspot shock occurs.

Figure 4 was generated by Gertler et al. (2019) using a typical approach used in theoretical

macroeconomic modeling. It is based on a single simulation repetition and reports the impulse

responses to a so-called “MIT shock”. The “MIT shock” approach starts the economy at

steady state, then hits the economy with a one-off shock (or in this case sequence of three

shocks) while setting all other current and future shocks to zero. Notably, this type of impulse

response has no empirical counterpart. In empirical setting, researchers generally study the

counterfactual changes in the outcome of interest, averaging out over all other shocks rather
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Figure 4: From Gertler et al. (2019). Response of the economy to a sequence of three small
negative capital quality shocks combined with a sunspot that triggers a bank run. The plot
starts in period 2, economy is in steady state in period 0 then it experiences the three shocks
and no shocks thereafter.

than conditioning on them being zero (Kolesár and Plagborg-Møller 2025).

To recover the structural quantile function (SQF) in this nonlinear setting, I follow the

same algorithm as for the SVAR model in the previous section. In each of the Monte Carlo

runs, I draw random realizations of the capital-quality and sunspot shocks over the first T +h

periods, then I replace the realization of the capital-quality shock at date T with each of the

grid values. This procedure generates potential outcomes of output for each fixed shock value

from the grid. Doing this many times recovers the distribution of the potential outcomes.

Then for a given quantile and horizon of interest, I simply compute the quantiles of the

simulated time T +h potential outcomes corresponding to each fixed grid point to recover the

SQF. The results of applying this procedure for the first horizon h = 1 and three quantiles

τ ∈ {0.1, 0.5, 0.9} is presented in Figure 5. It is clear that the SQF for the extreme quantiles
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Figure 5: Structural quantile function of output to capital quality shocks at horizon 1, plotted
for quantiles τ ∈ {0.1⋄, 0.5◦, 0.9△}. X-axis shows the capital quality shocks (the variance of
the capital quality shocks is σ = 0.005), output at horizon 1 is on the vertical axis. The results
are by simulating the Gertler et al. (2019) model for each shock grid point over MC = 1,000
simulation repetitions.

τ ∈ {0.1, 0.9} is nonlinear. Moreover, in the case of the τ = 0.1 quantile which captures the

downside risk to growth, the SQF does not look like it could be well approximated by a

quadratic function. Using higher order polynomials or nonparametric methods for estimation

of the SQF at extreme quantiles in small sample settings is unlikely to be yield satisfactory

results, as the precision of the estimates is likely going to be too low to draw any substantive

conclusions.

I compute the true QIR using a perturbation method. I sample random shocks for the

first T periods, at T I create a counterfactual series where a small perturbation δ is added to

the capital quality shock.6 I then simulate both the original and the counterfactual series

through T +H by drawing more random shocks. Finally, I compute the difference in the

6I use δ = 0.2σ where σ is the standard deviation of the capital quality shock. Theoretically δ should be
an infinitesimally small perturbation, but due to rounding errors excessively small values are impractical.
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quantiles of T +H output between the unperturbed and counterfactual series (and scale it by

δ), i.e. 1
δ
[qh(τ | Wj,t)− qh(τ | Wj,t + δ)]. I assess the estimation performance of three models:

QLP with and without controls and GQLP, comparing each against the true QIRs. In all

specifications, I use the capital quality shock as an observed treatment variable. The controls

are the model’s state-variables, namely: bankers’ net worth, capital quality and lagged capital

stock. Since capital quality shocks are independent, the controls are actually not needed for

causal identification. However, in applied work the tendency is to include controls even in

settings where a possibly exogenous shock is observed. This generally poses little issue when

focus lies in identification of average treatment effects, but can have dramatic consequences

for identification of quantile treatment effects.

As shown on Figure 6, the GQLP estimator estimates the same QIRs as the QLP estimator

without controls. These QIRs do not exactly coincide with the counterfactual QIR as the

functional form of the model is misspecified. However, from the independence of the captial

quality shocks and approximation properties of QR (Angrist et al. 2006), we know that QLP

without controls identifies a linear approximation to the truth. On the other hand, QLP with

controls estimates a completely different QIR for the τ = 0.1 quantile. The results of the

QLP model with controls could lead the researcher to conclude that there is no difference

across the responses of quantiles of outcome to the capital quality shock. The difference arises

because including controls means that the estimated QIRs are conditional on the state of the

economy, rather than unconditional. In the context of the Gertler et al. (2019) model, this

distinction is crucial. The unconditional lower quantiles capture episodes when the economy

is fragile and bank runs can be triggered, so they exhibit strong nonlinearities in response to

capital quality shocks. By contrast, once the state variables are conditioned on, the quantiles

reflect outcomes within given states of vulnerability or resilience. In this conditional setting,

the capital quality shock shifts the distribution of output more homogeneously, and the

extreme quantiles no longer display the same amplified downside responses.
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Figure 6: True QIR (dashed) versus estimated QIR (solid) under the linear specification for
quantiles τ ∈ {0.1⋄, 0.5◦, 0.9△}. Results averaged over MC = 1,000 simulations of length
T = 500 (after dropping 500 initial observations); horizons h = 1, . . . , 10.

4 Empirical Results

I apply the GQLP methodology to reexamine how financial risk shocks affect the distribution

of industrial production growth in the United States. The empirical exercise follows an

established literature that documents how adverse financial shocks disproportionately increase

downside risks to growth (Adrian et al. 2019; Chavleishvili and Manganelli 2024; Loria et al.

2025). My choice of financial risk variables – capturing credit and volatility risk – is motivated

by both theoretical considerations and empirical precedents. Theoretically, tightening financial

conditions can amplify economic downturns through multiple channels including credit market
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frictions that constrain firm investment when external finance premiums rise (Gilchrist and

Zakraǰsek 2012), and uncertainty-driven real options effects that delay irreversible investments

(Bloom 2009). Previous studies have used similar financial indicators to identify these channels,

with Gilchrist and Zakraǰsek (2012) focusing on the excess bond premium and Bloom (2009)

focusing on stock market volatility. By contrasting results from GQLP and QLP using these

indicators, I demonstrate that distinguishing between conditional and unconditional quantiles

is both statistically and economically important for understanding the causal drivers of

growth-at-risk.

My monthly dataset covers the US economy during the period between January 1984 and

June 2025 (T=498). All the data used is publicly available, with majority of it contained

in the FRED-MD database published by the St. Louis Fed (McCracken and Ng 2015). I

use monthly data for a larger sample size, with Industrial Production as the dependent

variable. In particular, the dependent variable Yi,t+h is defined as the h-months cumulative

log growth rate Yi,t+h = 100 ∗ [log(IPt+h)− log(IPt−1)]. I multiply the log growth rates by

100 to interpret the QIR in terms of percentage points. I normalize the treatment variable

Yj,t to interpret the QIRs as responses to a one standard deviation change.

The first treatment variable Yj,t I consider measures movements in credit risk. I will refer

to this variable as credit risk and I define it as the first-difference of the monthly Excess

Bond Premium (EBP) of Gilchrist and Zakraǰsek 2012, i.e. Yj,t = EBPt − EBPt−1. The

EBP is the residual of corporate bond credit spreads that cannot be explained by movements

in expected default risk, as such it measures the investor sentiment or risk appetite in the

corporate bond market.

The second treatment variable Yj,t I consider measures the volatility risk premium in

the equity markets, defined as the difference between realized and implied volatility of the

S&P500 index. I will refer to it as volatility risk for short. I compute realized volatility by

computing the standard deviation of daily returns (based on close prices) in each month. I

use the VIX as a measure of implied volatility. I normalize both variables before taking the
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difference. If option markets are efficient, implied volatility should be an efficient forecast

of future volatility, it should subsume the information contained in all other variables in

the market information set in explaining future volatility. Thus, Yj,t = realizedt − impliedt

captures realized volatility that was unexpected by the financial markets (Christensen and

Prabhala 1998).

I order the financial risk variable after macroeconomic variables but before financial

markets and monetary policy variables. This assumes that financial conditions are affected

contemporaneously by macroeconomic shocks but respond with a lag to shocks to monetary

policy. Assuming that financial variables adjust quicker than real variables is justified by

the speed at which financial markets respond to news and is a common assumption in the

macroeconomic literature (Sims 1980; Christiano et al. 1996; Bloom 2009; Gilchrist and

Zakraǰsek 2012; Chavleishvili and Manganelli 2024). My variables are ordered as follows:

{consumption growth, investment growth, industrial production growth, inflation, financial

risk variable Yj,t, S&P500 monthly return, change in the ten-year (nominal) Treasury yield,

change in the effective (nominal) federal funds rate}. This ordering implies that controls

vector Xt must include the contemporaneous values of the four variables ordered before the

treatment variable Yj,t. Additionally, to control for the broad state of the economy in the

recent past, I include the first two lags of all eight variables contained in my ordering in Xt.

In short, my timing restriction assumption allows for financial conditions to adjust within

the period to consumption growth, investment growth, industrial production growth and

inflation, but not to the stock market return, changes of the Treasury yields and changes

to the Fed’s funds rate. To test the robustness of the conclusions to the timing restriction

chosen, I report results obtained using two alternative orderings in the appendix section A5.

In particular, I report results with the treatment variable ordered first and last.

Throughout, I focus on three quantiles τ ∈ {0.1, 0.5, 0.9}. The τ = 0.1 quantile is

of primary interest as it measures downside-risk. I also report results for a richer set of

quantiles for four selected horizons, including the τ = 0.05 quantile corresponding to the
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usual definition of GaR. To simplify the analysis I assume a linear specification for the SQF

qh(τ | yj) = αh(τ) + βh(τ)yj , this ensures that the QIRτ (h) = βh(τ) does not depend on yj . I

choose a 90% confidence level for reporting the moving block bootstrap confidence intervals,

which are computed using a block length of 7 and 1,000 bootstrap replications.
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Figure 7: Cumulative response of Industrial Production (in % pts.) from a shock that increases
credit risk by one standard deviation, plotted for three quantiles τ ∈ {0.1⋄, 0.5◦, 0.9△}. Y-axis
is the estimated response β̂h(τ), x-axis is the horizon h in months. Dashed lines plot the
quantile impulse response. Shaded area is the moving block bootstrap 90% Confidence
Interval (with block length of 7, and 1,000 bootstrap replications). Note that the impact
response (horizon h = 0) is by assumption zero, given my timing restrictions.

Figure 7 shows the recovered QIRs of industrial production to a shock which increases

credit risk by one standard deviation. The upper-left panel in Figure 7 plots the QIRs for

the three quantiles on the same axis. It is clear that the response at the τ = 0.1 quantile is
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much more pronounced than the response at the other quantiles considered. This is a feature

of the data and not of the model, as nothing is restricting the responses of lower quantiles to

be lower than those of the upper quantiles. For instance, a shock that lowers the variance of

a distribution would give rise to positive QIRs for quantiles below the median and negative

QIRs for quantiles above the median.

My findings suggest economically large and statistically significant (at 90% confidence

level) growth losses of about 2 percentage points when a credit risk shock propagates in a

low growth environment (τ = 0.1). The median losses (τ = 0.5) are considerably smaller at

around 0.5 percentage points. The upside-risk response (τ = 0.9) is similar to the median

response, except that the effect is not statistically significant beyond the fifteen months

horizon. The estimation uncertainty measured by the moving block bootstrap confidence

intervals increases with the horizon, it is also higher for the τ = 0.1 quantile than the median

and the τ = 0.9 quantile.

The four panels of Figure 8 report results of the same model estimated for a richer set of

quantiles (from τ = 0.05 to τ = 0.95 in 0.05 increments) for four fixed horizons (6-months,

1-year, 2-years and 3-years). It shows that at all four of these horizons the slope of the

structural quantile function is more negative for lower quantiles. The effect of financial shock

on growth is statistically significant but not for all quantiles. Quantiles below the median are

more affected by financial shocks and the effect is more likely to be statistically significant

even though it is estimated less precisely than the effect around the median growth scenario.

The confidence intervals for the GaR τ = 0.05 quantile are considerably wider than for the

τ = 0.1 quantile, this is why the τ = 0.1 quantile is often preferred as a measure of downside

risk.

Figure 9 shows the results of estimating the same model but using volatility risk in place

of credit risk as the treatment variable. Comparing Figure 9 to Figure 7 suggests that the

relationship between volatility risk shocks and growth is similar to the relationship between

credit risk shocks and growth. The timing and magnitude of the quantile impulse responses
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Figure 8: Responses of Industrial Production (in % pts.) to a shock that increases credit risk
by one standard deviation, plotted for three horizons h ∈ {6, 12, 18, 24} (panels from top left
to bottom right). The responses were estimated for quantiles from τ = 0.05 to τ = 0.95 in

0.05 increments. Y-axis is the estimated response β̂h(τ), x-axis is the quantile τ (multiplied
by 100 for legibility). Shaded area is the moving block bootstrap 90% Confidence Interval
(with block length of 7, and 1,000 bootstrap replications). Blue dashed line reports the
response of the mean estimated from conventional local projections.

are almost identical following increases in volatility risk and credit risk. Both volatility and

credit risk affect down-side more than upside-risk. The similarities are striking considering

the fact that the sample correlation coefficient between these two variables is very low at 0.1.

These findings suggest either the existence of a common non-linear propagation mechanism

(as argued for by Loria et al. 2025) or the fact that it is the overall financial conditions – of

which credit and volatility are both components – that have an asymmetric effect on the
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Figure 9: Cumulative response of Industrial Production (in % pts.) from a shock that increases
volatility risk by one standard deviation, plotted for three quantiles τ ∈ {0.1⋄, 0.5◦, 0.9△}.
Y-axis is β̂h(τ), x-axis is the horizon h in months. Dashed lines plot the quantile impulse
response. Shaded area is the moving block bootstrap 90% Confidence Interval (with block
length of 7, and 1,000 bootstrap replications). Note that the impact response (horizon h = 0)
is by assumption zero, given my timing restrictions.

distribution of output growth.

As before, I report the results for more quantiles at four fixed horizons for the volatility risk

in Figure 10. Figures 8 and 10 are nearly identical. Again, this implies that the relationship

between financial shocks to the left-tail of growth does not depend on whether the shocks

pertain to credit risk or volatility risk.

To highlight the practical implications of using QLP versus GQLP in the context of GaR,

I compare the results obtained using both methodologies side by side on Figure 11. Figure
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Figure 10: Responses of Industrial Production (in % pts.) to a shock that increases volatility
risk by one standard deviation, plotted for three horizons h ∈ {6, 12, 18, 24} (panels from
top left to bottom right). The responses were estimated for quantiles from τ = 0.05 to

τ = 0.95 in 0.05 increments. Y-axis is the estimated response β̂h(τ), x-axis is the quantile τ
(multiplied by 100 for legibility). Shaded area is the moving block bootstrap 90% Confidence
Interval (with block length of 7, and 1,000 bootstrap replications). Blue dashed line reports
the response of the mean estimated from conventional local projections.

11 plots response of quantiles from τ = 0.05 to τ = 0.95 in 0.05 increments at the one-year

horizon. The estimated shape of the quantile function (β̂12(τ)) tells us how much asymmetry

there is in the response of different parts of the one-year ahead output growth distribution

to a financial shock. A flat line would suggests that all quantiles of the distribution are

affected equally meaning that the effect of a financial shock is a local shift of the output

growth distribution, implying that quantile analysis is redundant. The fact that the line
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is upwards sloping means that financial shocks skew the output growth distribution to the

left making large negative growth realizations substantially more likely. By comparing the

estimates from GQLP versus QLP it is clear that GQLP estimates vary more across quantiles

suggesting larger asymmetry between effects of financial shocks on downside versus median

and upside growth scenarios. As the reported results from GQLP and QLP are based on

the same timing restrictions and the same data, the difference in the estimates comes from

the fact that GQLP captures the effect on unconditional quantiles while QLP captures the

effect on conditional on controls quantiles. This means that volatility and credit risk shocks

have a larger negative effect on unconditionally low quantiles of growth than on conditionally

low growth quantiles. Therefore, relying on conditional quantile models can understate the

importance of these shocks as causes of recessions.

Table 3 compares the estimates obtained from QLP versus GQLP for two horizons

h ∈ {12, 24} and three quantiles τ ∈ {0.1, 0.5, 0.9} using four different lag length specifications.

I use this opportunity to point out another potential advantage of GQLP as a tool for quantile

impulse response analysis. Since GQLP allows for inclusion of covariates for identification

without affecting the interpretation of the coefficient on the treatment variable, it is less

sensitive to potentially arbitrary modeling choices such as the choice of how many lags to

include. In fact, for each quantile and horizon in table 3 the standard deviation of the

estimated response across the 4 different lag length specifications is greater for the QLP than

the GQLP estimator. At the 10th quantile, QLP estimates exhibit considerable sensitivity

to lag specification, with credit risk effects at the 12-month horizon varying from −0.55

to −0.94 percentage points and from −0.99 to −1.54 at the 24-month horizon, a range of

0.39 and 0.55 percentage points respectively. For the same quantile and horizons the range

of estimates obtained by GQLP is within 0.1 percentage point. For volatility risk both

estimators are more sensitive to the choice of lag length, but GQLP estimates are still more

stable. Notably, GQLP tends to identify more negative effects at the lower tail (with the

exception of the 24-month horizon for volatility risk), suggesting that conditional quantile
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Figure 11: Responses of Industrial Production (in % pts.) to a shock that increases credit
risk (top panels) or volatility risk (bottom panels) by one standard deviation, plotted for the
one year ahead horizon (h = 12). The responses were estimated for quantiles from τ = 0.05
to τ = 0.95 in 0.05 increments using GQLPs (left panels) and QLPs (right panels). Y-axis

is the estimated response β̂12(τ), x-axis is the quantile τ (multiplied by 100 for legibility).
Shaded area is the moving block bootstrap 90% Confidence Interval (with block length of
7, and 1,000 bootstrap replications). Blue dashed line reports the response of the mean
estimated from conventional local projections. All models include the same variables, assume
the same ordering, and have the same lag length specification.

analysis may underestimate the magnitude of adverse impacts during economic stress periods.

To facilitate comparison with previous studies, I focus on the effects at the twelve-month

horizon for the median and the 10th quantile. My findings indicate that a one-standard

deviation shock to credit or volatility risk lowers the 10th quantile of growth by approximately

1.5 percentage points, while the losses for median growth are around 0.5 percentage points.
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Quantile Horizon Lags
Credit risk Volatility risk

QLP GQLP QLP GQLP

0.1

12

1 -0.94 -1.37 -0.22 -1.44
2 -0.92 -1.43 -0.18 -1.51
3 -0.64 -1.33 -0.03 -1.46
4 -0.55 -1.33 -0.33 -1.44

24

1 -1.32 -1.69 -2.04 -1.61
2 -0.99 -1.69 -1.53 -1.22
3 -1.54 -1.73 -1.64 -1.02
4 -1.29 -1.73 -1.22 -1.02

0.5

12

1 -0.44 -0.57 -0.22 -0.17
2 -0.50 -0.42 -0.36 -0.21
3 -0.30 -0.34 -0.45 -0.26
4 -0.33 -0.42 -0.36 -0.30

24

1 -0.61 -0.66 -0.20 -0.24
2 -0.35 -0.55 -0.76 -0.24
3 -0.32 -0.50 -0.50 -0.06
4 -0.20 -0.44 -0.63 -0.06

0.9

12

1 -0.84 -0.63 -0.28 -0.22
2 -0.62 -0.63 -0.33 -0.29
3 -0.77 -0.63 -0.19 -0.29
4 -0.90 -0.83 -0.25 -0.26

24

1 -0.62 -0.28 -0.33 -0.24
2 -0.69 -0.29 -0.43 -0.42
3 -1.03 -0.08 0.10 -0.52
4 -0.50 -0.17 -0.54 -0.47

Table 3: Responses of Industrial Production (in % pts.) to a shock that increases credit risk
or volatility risk by one standard deviation, computed for two horizons h ∈ {12, 24} and
quantiles τ ∈ {0.1, 0.5, 0.9}. Lags refers to the number of lags included as covariates (2 lags is
the baseline specification). QLP refers to the quantile local projection framework which uses
the Koenker and Bassett 1978 estimator. GQLP is my local projections based framework
which builds on the generalized quantile regression estimator introduced by Powell 2020.

To the best of my knowledge, this paper is the first to identify the effects of financial shocks

on unconditional quantiles of growth, so there are no directly comparable findings. However,

a rich literature studies this relationship using conditional quantile models. Adrian et al. 2019,

in a quantile regression of one-year-ahead GDP growth on National Financial Conditions Index

(NFCI) and current GDP, find losses from a one-standard-deviation increase in NFCI of 1.75

and 0.75 percentage points for the τ = 0.1 and τ = 0.5 quantiles, respectively. Importantly,

the authors do not assign causal interpretation to these estimates as they do not control for
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lags in the regression. Ruzicka 2021 uses QLP (with smoothing) to estimate the effects of

NFCI on GDP growth using quarterly data from 1973 to 2015, finding losses of approximately

2.5 and 1.5 percentage points for the τ = 0.1 and τ = 0.5 quantiles, respectively. Loria et al.

2025 study the effects of the EBP on Industrial Production growth using their two-stage

methodology. They rescale responses across quantiles such that the median falls by 25 basis

points on impact, making direct magnitude comparisons difficult. However, we can compare

the ratio of the 10th quantile response to the median response, which Loria et al. 2025 report

as 3.7 (averaged over the first year). I find this ratio equals 2.8 for credit risk shocks and 4.1

for volatility risk shocks. Loria et al. 2025 examine the effects of various shocks on growth

and find similar asymmetries, suggesting a common, non-linear propagation mechanism. This

hypothesis is consistent with my findings that volatility risk and credit risk shocks have nearly

identical quantile impulse responses despite being practically uncorrelated. For the euro

area, Chavleishvili and Manganelli 2024 use a quantile vector autoregression to study the

effects of shocks to the composite indicator of systemic stress (CISS) on euro area industrial

production growth, reporting considerable asymmetry with downside risk losses exceeding

median losses by a ratio of approximately 4. Chavleishvili et al. 2021 reach similar conclusions

using Bayesian methods.

5 Conclusion

Conventional econometric methods that model the mean impulse responses of growth to

financial shocks can underestimate the true importance of financial shocks as causes of

recessions. This is widely appreciated by academics and policy-makers alike, which explains

why a lot of research effort is put devoted to understanding the downside risks to growth.

I offer a new methodology to identify the causal drivers of growth-at-risk. My identification

strategy is based on controls, yet it identifies treatment effects on unconditional quantiles.

In my view, the distinction between conditional and unconditional quantiles of growth is

important in the context of GaR. Conditionally low growth rates map to periods when the
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economy under-performs expectations, for example in a favorable macroeconomic climate

this would mean high-yet-disappointing growth. On the other hand, unconditionally low

growth rates always map to downturns and recessions, and as such are of primary concern for

policymakers and academics. My framework allows to study the latter while using familiar

controls-based identification strategies based on timing restrictions.

Understanding the structural drivers of growth vulnerability can help discipline theoretical

work and macroprudential policy efforts. My empirical findings show that financial shocks

have very large effects on downside risks with little upside. This suggests that stabilizing

them can help avoid painful recessions, without large growth losses during the expansions.

Several avenues for future research emerge from this work. First, the methodology could

be extended to incorporate instrumental variables identification strategies. This extension is

straightforward given that the generalized quantile regression estimator of Powell 2020 that

underlies GQLP accommodates instrumental variable identification. Second, future research

could extend smoothing techniques to the GQLP framework, similar to how Ruzicka (2021)

applies smoothing to QLP, building on the smooth local projection approach of Barnichon and

Brownlees (2019). Third, the framework offers promising applications beyond growth-at-risk

analysis. One potential application of GQLP could be to study inflation-at-risk, examining

how monetary policy shocks differentially affect inflation outcomes in high versus low inflation

environments. Such analysis could provide valuable insights into the asymmetric transmission

of monetary policy and inform optimal policy design across different inflationary regimes.

Another application where GQLP could provide novel insights is studying how the size of the

fiscal multiplier changes depending on whether the government spending shocks occur during

expansions versus contractions. Such insights could enhance the effectiveness of fiscal policy

in supporting growth by informing the optimal timing of government spending.
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Appendix

A1 Proofs

A1.1 Proof of theorem 1

Using conditional independence, I write:

E[Yi,t+h1{Yj,t = yj} | Xt] = E[Yi,t+h(W1:t+h)1{Yj,t = yj} | Xt]

= E[Yi,t+h(g
−1
j (yj, Xt))1{Yj,t = yj} | Xt].

Expand via expectation and covariance:

= E[Yi,t+h(g
−1
j (yj, Xt)) | Xt] E[1{Yj,t = yj} | Xt]

+ Cov
(
Yi,t+h(g

−1
j (yj, Xt)),1{Yj,t = yj} | Xt

)
.

Under conditional random assignment, the covariance is zero

E[Yi,t+h1{Yj,t = yj} | Xt]

= E[Yi,t+h(g
−1
j (yj, Xt)) | Xt]E[1{Yj,t = yj} | Xt].

Use the identity E[A | B] = E[A1{B}]
E[1{B}] to obtain:

E[Yi,t+h | Yj,t = yj, Xt] = E
[
Yi,t+h(g

−1
j (yj, Xt)) | Xt

]
.
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Taking partial derivative w.r.t. yj, exchanging derivative/expectation and applying the chain

rule yields:

∂

∂yj
E[Yi,t+h | Yj,t = yj, Xt] = E

[ ∂

∂yj
Yi,t+h(g

−1
j (yj, Xt)) | Xt

]
= E

[∂Yi,t+h(wj)

∂wj

∂g−1
j (yj, Xt)

∂yj
| Xt

]
.

A1.2 Proof of theorem 2

Yt ∈ Rk admits a structural Wold representation

Yt =
∞∑
ℓ=0

ΨℓWt−ℓ,
∞∑
ℓ=0

∥Ψℓ∥ < ∞,

where {Wt}t∈Z are i.i.d. N (0, Ik). Fix i, j ∈ {1, . . . , k} and a horizon h ≥ 0. Write the i-th

component at horizon h as

Yi,t+h = [Ψh]i,j Wj,t +Ri,t+h,

where

Ri,t+h :=
∑
m̸=j

[Ψh]i,mWm,t +
∑
ℓ̸=h

k∑
m=1

[Ψℓ]i,mWm,t+h−ℓ

Because the innovations are i.i.d. Gaussian, Wj,t is independent of Ri,t+h (uncorrelated jointly

Gaussian variables are independent). Applying the definition of potential outcomes yields:

Yi,t+h(wj) = [Ψh]i,j wj +Ri,t+h.

Mean impulse response (IR):

Taking expectations yields:

E[Yi,t+h(wj)] = E[Ri,t+h + [Ψh]i,jwj] = E[Ri,t+h] + [Ψh]i,j wj.

Differentiating w.r.t. wj yields:
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IR(h) =
∂ E[Yi,t+h(wj)]

∂wj

= [Ψh]i,j.

Conditional mean impulse response (cIR):

Let Xt be any vector of covariates measurable with respect to past and current information.

Using the structural Wold representation,

Yi,t+h(wj, x) = [Ψh]i,j wj +Ri,t+h(x),

where Ri,t+h(x) collects all terms independent of Wj,t.

E[Yi,t+h(wj, x)] = [Ψh]i,j wj + E[Ri,t+h(x)].

Differentiating with respect to wj gives

cIR(h) =
∂E[Yi,t+h(wj, x)]

∂wj

= [Ψh]i,j.

Quantile impulse response (QIR):

qh(τ | wj) ≡ qYi,t+h(wj)(τ | Wt,j = wj)

= qRi,t+h+[Ψh]i,jwj
(τ | Wt,j = wj)

= qRi,t+h
(τ | Wt,j = wj) + [Ψh]i,jwj

= qRi,t+h
(τ) + [Ψh]i,jwj

The first equivalence is stated to remind the reader of a notational short-cut used

throughout the paper. The first equality sign follows from the formula for the potential

outcome. The second equality sign follows from the fact that [Ψh]i,jwj is a constant and so it

can go outside of the quantile function. The last equality sign follows from the independence
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of Wj,t w.r.t Ri,t+h.

Differentiating w.r.t. wj yields:

QIRτ (h) =
∂ qh(τ | Wj,t = wj)

∂wj

= [Ψh]i,j.

Therefore QIRτ (h) = [Ψh]i,j for all τ ∈ (0, 1).

Conditional quantile impulse response (cQIR):

Let Xt be any vector measurable w.r.t. past and current observables.

qh(τ | wj, x) ≡ qYi,t+h(wj ,x)(τ | Wj,t = wj, Xt = x)

= qRi,t+h+[Ψh]i,j wj
(τ | Wj,t = wj, Xt = x)

= qRi,t+h
(τ | Wj,t = wj, Xt = x) + [Ψh]i,j wj

= qRi,t+h
(τ | Xt = x) + [Ψh]i,j wj

The first equivalence is stated to remind the reader of a notational short-cut used

throughout the paper. The first equality substitutes the formula for the potential outcome.

The second equality sign follows from the fact that [Ψh]i,jwj is a constant and so it can go

outside of the quantile function. The last equality sign follows from the independence of Wj,t

w.r.t Ri,t+h.

Differentiating w.r.t. wj yields:

cQIRτ (h) =
∂ qh(τ | Wj,t = wj, , Xt = x)

∂wj

= [Ψh]i,j.

Therefore cQIRτ (h) = [Ψh]i,j for all τ ∈ (0, 1).

This completes the proof that cIR(h) = IR(h) = QIRτ (h) = cQIRτ (h) ∀h and ∀τ .
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A1.3 Proof of theorem 3

I reformulate the theorem 3 from Powell 2020 in my setting. First, I want to show: P[Yi,t+h ≤

qh(τ | Yj,t) | Yj,t, X
⊤
t ] = P[Yi,t+h ≤ qh(τ | Yj,t) | X⊤

t ]. Evaluating the left hand side of the

equality yields:

P[Yi,t+h ≤ qh(τ | Yj,t) | Yj,t, X
⊤
t ] = P[Yi,t+h(Yj,t) ≤ qh(τ | Yj,t) | Yj,t, X

⊤
t ]

= P[Yi,t+h(yj) ≤ qh(τ | yj) | Yj,t, X
⊤
t ]

= P[Yi,t+h(yj) ≤ qh(τ | yj) | X⊤
t ].

The first equality sign follows from the definition of a potential outcome. The second equality

sign comes from the rank similarity assumption 7 which must hold for all d, d′ and thus also

for d = Yj,t. The third equality sign follows from the conditional (on Xt) independence of Yj,t

which follows from assumptions 3 and 5. Evaluating the right hand side of the equality yields:

P[Yi,t+h ≤ qh(τ | Yj,t) | X⊤
t ] = P[Yi,t+h(Yj,t) ≤ qh(τ | Yj,t) | X⊤

t ]

=

∫
P[Yi,t+h(Yj,t) ≤ qh(τ | Yj,t) | X⊤

t , Yj,t]dP(Yj,t | X⊤
t )

=

∫
P[Yi,t+h(yj) ≤ qh(τ | yj) | Yj,t, X

⊤
t ]dP(Yj,t | X⊤

t )

= P[Yi,t+h(yj) ≤ qh(τ | yj) | X⊤
t ].

The first equality follows from the definition of a potential outcome. The third equality

follows from the rank similarity assumption 7. The second and fourth equality follow directly

from properties of marginal probability functions.
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Now I want to show: P[Yi,t+h ≤ qh(τ | Yj,t)] = τ .

P[Yi,t+h ≤ qh(τ | Yj,t)] =

∫
P[Yi,t+h(Yj,t) ≤ qh(τ | Yj,t) | X⊤

t , Yj,t]dP(X⊤
t , Yj,t)

=

∫
P[Yi,t+h(yj) ≤ qh(τ | yj) | X⊤

t , Yj,t]dP(X⊤
t , Yj,t)

= P[Yi,t+h(yj) ≤ qh(τ | yj)]

= τ

The second equality follows from the rank similarity assumption 7. The fourth equality

follows from assumption 6.
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A2 Bootstrap algorithm

1. Bootstrap Setup: Initialize B bootstrap replications and create empty storage for

parameter estimates of interest.

2. Block Resampling Loop: For each bootstrap replication b = 1, . . . , B, randomly select

starting positions and construct blocks of M consecutive observations to create a pseudo-

sample of size T that preserves temporal dependence.

3. Model Estimation: Re-estimate the econometric model on each bootstrap pseudo-sample

and extract the parameter estimates of interest.

4. Bootstrap Storage: Store the difference between each bootstrap estimate and the original

sample estimate: β̂h(τ)b − β̂h(τ) for bootstrap replication b.

5. Confidence Interval Construction: Compute the standard deviation of the B bootstrap

estimates and construct normal-based confidence intervals as:

CI = β̂h(τ)± zα/2 × SEbootstrap(β̂h(τ))

where SEbootstrap(β̂h(τ)) =
√

1
B−1

∑B
b=1(β̂h(τ)b − β̂h(τ))2.
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A3 Monte Carlo results - endogenous volatility SVAR

Quantile Horizon
QLP no controls QLP with controls GQLP

Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE

0.1

1 -0.840 0.886 -0.176 0.194 0.000 0.197
2 -0.981 1.064 -0.148 0.237 -0.002 0.302
3 -1.079 1.204 -0.113 0.307 -0.002 0.405
4 -1.143 1.310 -0.083 0.381 0.003 0.496
5 -1.170 1.381 -0.064 0.464 0.007 0.584
6 -1.174 1.431 -0.052 0.551 0.012 0.657
7 -1.161 1.477 -0.029 0.620 0.027 0.716
8 -1.173 1.530 -0.040 0.672 -0.001 0.766
9 -1.160 1.569 -0.016 0.728 0.018 0.834
10 -1.162 1.600 -0.020 0.776 0.017 0.875

0.5

1 -0.628 0.646 -0.010 0.061 -0.002 0.108
2 -0.779 0.809 -0.026 0.128 -0.002 0.166
3 -0.857 0.903 -0.034 0.187 -0.005 0.212
4 -0.900 0.956 -0.029 0.235 0.001 0.261
5 -0.930 0.999 -0.027 0.273 -0.003 0.302
6 -0.948 1.029 -0.032 0.320 -0.001 0.338
7 -0.968 1.065 -0.044 0.358 -0.006 0.377
8 -0.971 1.083 -0.022 0.391 -0.005 0.393
9 -0.980 1.108 -0.024 0.411 -0.005 0.426
10 -0.974 1.119 -0.017 0.442 -0.007 0.455

0.9

1 -0.537 0.559 0.183 0.198 -0.014 0.145
2 -0.640 0.674 0.172 0.230 -0.019 0.206
3 -0.694 0.740 0.153 0.268 -0.023 0.259
4 -0.740 0.797 0.109 0.295 -0.025 0.308
5 -0.755 0.825 0.090 0.336 -0.026 0.345
6 -0.774 0.865 0.074 0.377 -0.030 0.397
7 -0.781 0.891 0.061 0.407 -0.020 0.434
8 -0.777 0.908 0.062 0.444 -0.015 0.464
9 -0.792 0.942 0.037 0.476 -0.026 0.496
10 -0.803 0.967 0.037 0.509 -0.034 0.527

Table 4: Simulation results for the cumulative QIR of the illustrative example (complementing
Figure 3 in the main text). The “true” QIR to which the estimators were compared
with is in fact a linear approximation obtained from the quantile local projection model
Yt+h = αh(Ui,t+h) + βh(Ui,t+h)Wj,t. The true QIR was obtained by averaging the estimated
βh(τ) over the Monte Carlo replications. RMSE is the root mean squared error. QLP refers to
the quantile local projection framework which uses the Koenker and Bassett 1978 estimator,
GQLP uses the generalized quantile regression estimator introduced by Powell 2020. Results
are from MC = 1,000 simulation replications, with a time-series of length T = 500 (after
dropping 1,000 initial observations).
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A4 Empirical results - additional figures and tables
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(e) Yj,t - Credit Risk
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(f) Yj,t - Volatility Risk

Figure 12: Monthly time-series from January 1984 to June 2025. Grey bands indicate NBER
recession dates. The series in the bottom panels have been normalized.
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A5 Robustness
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(c) Volatility risk ordered first
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(d) Volatility risk ordered last

Figure 13: Cumulative response of Industrial Production (in % pts.) from a shock that
increases credit (top panels) or volatility (bottom panels) risk by one standard deviation,

plotted for three quantiles τ ∈ {0.1⋄, 0.5◦, 0.9△}. Y-axis is the estimated response β̂h(τ),
x-axis is the horizon h in months. Dashed lines plot the quantile impulse response. Note that
the impact response (horizon h = 0) is by assumption zero when the shock is ordered after
the dependent variable.
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