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Abstract

I introduce Generalized Quantile Local Projections (GQLP), a novel methodology for identifying
structural quantile impulse responses. Unlike existing methods that estimate conditional quantile
effects, GQLP identifies causal effects on unconditional quantiles while still exploiting controls for
identification. This distinction is crucial in macroeconomics. For instance, when studying output
growth, low unconditional quantiles correspond to actual recessions rather than merely periods of
lower-than-expected growth relative to control variables. I develop a general simulation algorithm to
recover true structural quantile responses in analytically intractable models. I conduct Monte Carlo
experiments demonstrating that GQLP successfully recovers structural quantile impulse responses,
whereas conventional conditional quantile methods can yield misleading conclusions in the presence
of control variables even when the true structural shock is observed. In a growth-at-risk application,
I show that financial risk shocks have strongly asymmetric effects. Using timing restrictions for
identification, I find that a one-standard-deviation credit shock reduces industrial production growth
by 2 percentage points in the lower tail versus 0.5 percentage points at the median. In other
words, GQLP reveals left-tail-to-median response ratios of four-to-one, double those found using
conventional Quantile Local Projections, indicating that standard methods underestimate the effect
of financial shock on downturns. These findings suggest that stabilizing financial conditions can
help prevent painful recessions without sacrificing growth during expansions.
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1 Introduction

Modern macroeconomics increasingly recognizes that shocks may affect the entire distribution
of economic outcomes, beyond just the mean, and in particular the tails of the distribution.
Explicit attention to tail risks has also become commonplace in policy. For instance, at the
September 2025 FOMC meeting, the Committee motivated a federal funds rate cut by noting
that “downside risks to employment have risen.”

To understand the drivers of tail risks, researchers increasingly use quantile regression
to measure how quantiles of the outcome distribution respond to shocks. However, a
methodological complication arises: the inclusion of control variables for causal identification
transforms the analysis from unconditional to conditional quantiles. This distinction is central
across many areas of macroeconomics. When studying fluctuations in output growth or
inflation, researchers are often interested in the drivers of extreme outcomes—such as recessions
or destabilizing inflationary episodes. Unconditional tail quantiles directly correspond to
these extreme outcome periods. In contrast, conditional tail quantiles correspond to periods
that are extreme relative to what the control variables predict and thus do not always map
onto actual crisis periods. For instance, a conditionally low quantile of output growth may
correspond to a period of underperforming growth given favorable economic conditions, yet
still occur during an expansion.

Quantile regression estimates coefficients using observations at specific quantiles of the
conditional outcome distribution. Adding controls changes that conditional distribution,
altering which observations are “local” to a given quantile and thereby shifting the estimated
coefficients. In linear regression, adding controls orthogonal to the treatment leaves average
treatment effects unchanged. However, in quantile regression even the addition of statistically
independent controls can change the estimated quantile treatment effects. This creates
a trade-off: unconditional quantiles without controls have clear economic interpretation
but potentially biased estimates; including controls helps achieve causal identification but

at the cost of shifting the analysis to conditional quantiles and thereby losing economic



interpretability.

This paper develops a new methodology that resolves this tension between causal identifi-
cation and economically meaningful quantile interpretation. I introduce Generalized Quantile
Local Projections (GQLP), which build on the generalized quantile regression of Powell (2020),
the local projections approach of Jordd (2005), and the potential outcomes framework for time
series of Rambachan and Shephard (2021). GQLP explicitly distinguish treatment variables
(whose effects we seek to measure) from control variables (used solely for identification),
allowing estimation of causal effects on unconditional quantiles while still exploiting controls
for identification. Beyond disentangling the effect of including controls on identification
versus interpretation, GQLP has three additional advantages. First, the framework allows
to define quantile impulse responses (QIRs) as responses to one-off shocks, ensuring direct
comparability with conventional mean impulse responses. Second, it imposes no linearity
assumptions on the structural quantile function, accommodating complex nonlinear responses
that depend on both baseline and counterfactual treatment values. Third, while this paper
emphasizes identification through timing restrictions and control variables, the framework
naturally extends to instrumental variable designs.

Growth-at-risk (GaR) provides a natural application for GQLP. GaR is defined as the
fifth percentile (7 = 0.05 quantile) of future growth, representing a pessimistic scenario
that materializes five percent of the time. A large empirical literature documents that
financial conditions are key drivers of GaR (Adrian et al. 2019). This literature is primarily
focused on forecasting (Plagborg-Mgller et al. 2020; Brownlees and Souza 2021; Chulia
et al. 2024), with policymakers using declining GaR forecasts as early warnings of rising
distress in the economy (Prasad et al. 2019). Theoretical macrofinance models attribute the
heterogeneous effect of financial conditions on upside versus downside risk to occasionally
binding financial constraints, balance sheet interactions, and amplification mechanisms that
can endogenously cause occasional financial crises (He and Krishnamurthy 2019; Gertler et al.

2019; Brunnermeier and Sannikov 2014).



I identify the causal effects of financial risk shocks on the unconditional quantiles of
industrial production growth via timing restrictions, controlling for macroeconomic, financial,
and monetary policy variables. The results indicate large and persistent output losses in
low-growth environments, while effects at the median and upper quantiles are considerably
smaller. For example, a one-standard-deviation credit risk shock reduces growth by up to 2
percentage points in the lower tail, compared to approximately 0.5 percentage points at the
median. Relative to conventional Quantile Local Projections (QLP), GQLP estimates uncover
substantially stronger asymmetries between the lower tail and the median, with response
ratios of roughly four to one, compared to two to one under QLP. The difference arises
because QLP identifies effects on conditional quantiles, whereas GQLP recovers effects on
unconditional quantiles, preserving the interpretation of quantiles as corresponding to phases
of the business cycle. These results are in line with the fact that conditional quantile methods
may underestimate adverse impacts of financial shocks during economic stress periods. I
rationalize this finding in the Monte Carlo section using a nonlinear equilibrium model of
Gertler et al. (2019), where conditioning on bank sector health masks the asymmetry of
responses of quantiles of output growth to a capital quality shock.

To establish the theoretical foundation for quantile analysis, I prove a quantile invariance
theorem. The theorem states that any dependent process with a structural Wold representation
and Gaussian innovations features quantile impulse responses that are identical across all
conditional and unconditional quantiles and equal to the mean impulse response. This
means that interesting quantile dynamics require departures from linearity, Gaussianity, or
stationarity. To evaluate the GQLP framework in non-linear settings, I develop a general
algorithm to recover the true QIRs from simulating the model in cases where they are otherwise
analytically intractable. The algorithm generates potential outcomes by experimentally fixing
the treatment variable to values from a grid. Doing so over many histories of all other model
variables recovers the distribution of the potential outcomes. This enables computation of

the true value of the QIRs or other statistics of interest. This method follows directly from



the definition of potential outcomes and is readily applicable to most structural models.
It remains computationally feasible for unconditional quantile responses since they require
perturbing only one variable at a time. Conditional quantile responses are substantially more
expensive to recover as each additional variable adds another dimension to the simulation
grid, causing an exponential increase in computation time.

I apply my simulation algorithm to both an endogenous volatility structural vector
autoregression (SVAR) and a nonlinear dynamic stochastic general equilibrium (DSGE)
model of Gertler et al. (2019). I show that in these models shocks have asymmetric effects
across the distribution, with responses differing substantially between upper and lower
quantiles. Moreover, the structural quantile functions exhibit nonlinear functional forms at
some horizons for some quantiles. 1 then compare the performance of QLP with GQLP in a
Monte Carlo study. Using the SVAR I show that GQLPs with timing restrictions produce
estimates equivalent to a regression on the unobservable structural shock only—a property
shared by standard SVARs and local projections but not by QLPs. This ensures GQLP-
estimated QIRs identify the causal effect of a structural shock to the treatment on the quantile
of the outcome. Using the DSGE model I demonstrate the importance of distinguishing
between conditional and unconditional quantile responses in structural models. I show that
GQLP and QLP without controls both capture unconditional effects of capital quality shocks
on output across all states of banking sector health. However, QLP with controls estimates
conditional responses within given states of financial vulnerability, suggesting symmetric
effects across quantiles and masking the amplified downside responses during financial crises.
Since capital quality shocks are independent, controls are unnecessary for identification, yet
researchers routinely include them with plausibly exogenous shocks. While this practice is
innocuous when studying average effects, it fundamentally alters the economic interpretation
of quantile effects.

This work contributes to several strands of literature. I extend the generalized quan-

tile regression of Powell (2020) from the cross-section quantile treatment effects literature



(Chernozhukov and Hansen 2013; Angrist et al. 2006) to impulse response analysis. In doing
so, I build on the potential outcomes for time series framework (Rambachan and Shephard
2021; Angrist and Kuersteiner 2011; Angrist et al. 2018). The methodology advances the
local projections literature (Jorda 2005; Jorda and Taylor 2025) by enabling identification
of unconditional quantile impulse responses. By establishing a novel causal link between
financial risk shocks and the unconditional tail risks of output growth, I contribute to an
emerging empirical literature that studies the structural drivers of GaR (Adrian et al. 2020;
Adrian et al. 2022; Loria et al. 2025). My empirical findings can be rationalized by the
macrofinance literature (Kiyotaki and Moore 1997; Brunnermeier and Sannikov 2014; He
and Krishnamurthy 2019; Gertler et al. 2019) and are related to work on the cyclicality
of volatility and the skewness of macroeconomic variables (see Bloom (2014) for a general
review, and Cascaldi-Garcia et al. (2023) for a review of measures of uncertainty, volatility
and risk).

Various alternative definitions and estimators of quantile impulse responses exist in the
literature, but none addresses the fundamental challenge of identifying causal effects on
unconditional quantiles while using control variables for identification. The QLP framework
in Linnemann and Winkler (2016), Adrian et al. (2019), Adrian et al. (2022), Jorda et al.
(2022), and Bochmann et al. (2023) is the closest to my approach. This framework recovers
the QIR from local projection coefficients estimated using the quantile regression of Koenker
and Bassett 1978, with estimation done separately for each quantile and horizon. In the
absence of control variables, there is no difference between GQLP and QLP. Chavleishvili
and Manganelli 2024 achieve identification by imposing timing restrictions on a recursive
quantile vector autoregressive model. The reported QIRs assume a realization of a median
sample path for the shock variable over the response horizon. Montes-Rojas 2019 and Lee
et al. 2021 use a SVAR model to identify a structural shock since their multivariate quantile
models are reduced-form. The QIR proposed by Montes-Rojas 2019 describes the cumulative

impact of a series of shocks, not a one-off shock, because persistent realizations of lower (or



upper) quantiles are assumed in its construction. Han et al. 2022 and Jung and Lee 2022
study QIRs in models where the quantile itself is autoregressive, as in the CAViaR model
of Engle and Manganelli 2004. In the applied literature, Mumtaz and Surico 2015 estimate
structural QIRs of output growth in response to monetary policy shocks using the quantile
autoregressive-distributed lag model of Galvao et al. 2013. Loria et al. 2025 estimate QIRs
within a conventional local projections framework, but using as dependent variables the
fitted quantiles of year-ahead output growth obtained from a quantile regression on current
macro-financial conditions.

The remainder of the paper is structured as follows. Section 2 introduces the econometric
framework. Section 3 motivates the frameworks using a simulation study. Section 4 contains

the empirical analysis. Concluding remarks follow in Section 5.

2 Econometric framework

2.1 Potential Outcomes

My generalized quantile local projections (GQLP) framework builds upon the literature on
local projections (Jordd 2005), quantile treatment effects in the presence of covariates (Powell
2020), and potential outcomes for time series (Rambachan and Shephard 2021).

Let Y;; denote a scalar outcome variable and Y}, the scalar treatment variable, both of
which are part of a multivariate process Y; € R¥. Let the vector X, denote a finite history
subset of the sigma-algebra generated by Yy, i.e. X; C F) where 7Y = o({Y,:s < t}). Let
the vector W; € R* denote the assignments (or shocks in the terminology of macroeconomics).
Throughout, capital letters represent random variables, while lowercase letters denote the
fixed values these variables may take.

Following Rambachan and Shephard (2021) I define a potential outcomes process as a

multivariate time series process that satisfied assumptions 1 and 2.

Assumption 1 (Non-anticipating Potential Outcomes). For each t > 1 and all sequences



{ws}521 and {w;}le m W,

Kt(wlzt, {ws}52t+1> = Yt(wlzt, {w;}52t+1) almost surely.

I thus denote the time-t potential outcome as Yy(wy.), where Yi(wi,;) € Y C R*.

Assumption 2 (Sequentially Probabilistic Assignment Process). The assignment process
satisfies 0 < Pr(Wy = w | FY|) < 1 almost surely for all w € W. The probability structure is

determined by the filtered probability space generated by {W;, {Yi(wiy) : w1y € W }is1.

I focus on the dynamic effects on outcome variable ¢ to a time ¢ change in treatment

variable j, thus I use the shortcut notation:

Yz‘,t+h(wj) = YE,Hh(WMfl’ Wl:jfl,t; Wy, Wj+1:k,t7 Wt+1;t+h)-

Y ++n(w;) represents the potential outcomes that Y;,,, would take had assignment W, been
experimentally (exogenously) fixed to W;; = w;." The potential outcome is a random variable
which depends on assignments up to time t + h. The set of potential outcomes includes the
observed outcome, which in this shorter notation is denoted Y; s, = Y; 414 (W;,). Similarly, a
potential outcome can be defined in terms of experimentally fixing Y;, = y; as Y 141 (y;), in
which case the observed outcome is Yy, = Vi (Yie).

Before moving on to identification of quantile impulse responses, it is instructive to
consider what assumptions are needed to identify the structural mean impulse response when
the assignments W; are unobservable. This is a standard setting in macroeconomics, where
researchers often observe only a vector of endogenous variables Y; but not the underlying
assignments W;. The typical model used in such settings is the structural vector autoregression.

SVAR(1) assumes that the potential outcome process satisfies AoY;(w14) = wi+A1Yi 1 (w1.4-1).

!Throughout I focus on the potential outcomes for a fixed value value of a variable in time t. As such
the notation does not make explicit the fact that both the timing and the horizon of the treatment matter,
for instance Y; 11 n(w;) and Y; (141)4(h—1)(w;) may differ even though both occur in period ¢ + h, because
Y; t+n(w;) does not constrain the assignment in period ¢t + 1 to equal y;.



The following assumptions are closely related but not identical to those used for identification
in the SVAR literature, and although they can be applied in the SVAR setting they are more

general and can be used to study identification in other (also nonlinear) settings.

Assumption 3 (Independent Assignments). Assignments are independent across time and

across units. That is, for allt # s, Wy 1L Wy, and for all @ # 5, Wi, 1L Wj,.

Assumption 4 (Deterministic Potential Outcomes). Potential outcomes Y:(wy.) are deter-

ministic functions of the assignment sequence for all t > 1 and wy., € W,

Assumption 5 (Partial Invertibility). The outcome Y;; is a function only of the structural
shock W;, and the time-t observables Xy, i.e., Y;, = g;(W;, X;). Furthermore, the inverse
Wi = g;l(Yj7t, X;) exists.

Assumption 3 ensures that the assignments can be interpreted as structural shocks. It is
a stronger version of the uncorrelatedness of structural shocks assumptions commonly used in
the SVAR literature (if structural shocks are Gaussian the two assumptions are equivalent).
Assumption 4 ensures that the potential outcomes (including the observed outcome) are
a function of past and present structural shocks only, i.e. there are no “external” sources
of randomness driving the potential outcomes. Assumption 5 ensures that although the
structural shock of interest W, is not observed, it can be recovered from observable data.
This is a strong assumption, but it is weaker than the full invertibility assumption used in
the SVAR literature — which requires that all the structural shocks W; can be recovered.
Note that assumptions 3 and 5 imply that Y; () | Ve Xe ~ Yiesn(y;) | X In other
words, since the treatment variable is assumed to be only a function of observables and
an independent assignment, by conditioning on the appropriate variables the treatment is

conditionally independent of the potential outcomes.

Theorem 1 (Impulse Response Identification with Unobservable Assignments). Under



Assumptions 1 through 5, the causal marginal filtered treatment effect is identified as:

0 OYiwan(wy) 097y, Xo)
8_y<E[Y;’t+h |Y: =vy;, Xs] =E teh (W) L 2P
J

w; dy; | X

Theorem 1 is similar to the theorem 10 in Rambachan and Shephard (2021), except that
the addition of the partial invertibility assumption 5 makes the interpretation of the identified
impulse response more straightforward as it measures the causal effect of an intervention to a
single scalar assignment rather than the effect of “simultaneously shifting all assignments
from time t = 1 to t”. The proof of theorem 1 is in the appendix section A1.1. This theorem
says that the structural impulse response can be identified without having to observe W ,.
Moreover, it takes a particularly simple form made up of two terms, where the second term

997 (v, X . : .
% does not depend on the horizon of the response nor the dependent variable and is
J

9g; ' (y,X¢)

Oy, =1

a constant in linear settings. In particular, in a SVAR it is easy to show that
and in Local Projections settings it can be normalized to 1 as outlined in Plagborg-Mgller

and Wolf (2021).

2.2 Quantile Impulse Response definition

In what follows, I will assume that for a fixed treatment y; and for each horizon h, Y; ;11 (y;)
has a structural quantile function (SQF') denoted ¢, (7 | y;). Notably, covariates X; do not

enter into this SQF, which distinguishes it from the conditional covariates SQF denoted

Qh(T | Z/jal')-

Assumption 6 (Structural Quantile Function). For each Y;14(y;), there exists a structural

quantile function g, (T | y;) that is non-decreasing and left-continuous in T € [0, 1].

Assumption 6 implies that the structural quantile function exists and does not change with

time, ruling out models that feature structural breaks or other violations of stationarity. Each



potential outcome can be related to its structural quantile function as follows:

Yiirn (W) = au(Uisn(y5) | ¥5), Uigrn(y;) ~ Uniform|0, 1].

Uii+r(y;) is responsible for heterogeneity of outcomes among time periods with the same
treatment y;. I refer to it as a rank variable as it determines the placement in the h-periods-
ahead outcome distribution for a given treatment y;. U;;44(y;) contains information up to
time t + h.

The goal of this paper is to identify the structural quantile impulse response, defined as:

QIR.(h) = %@/W). (1)

If the SQF is linear i.e. ¢x(7 | yj) = an(T) + Br(7)y;, then the QIR,(h) = Bi(7) does not
depend on y;. I discuss whether linearity of the SQF can be justified later. Importantly, I

contrast this definition with the structural conditional quantile impulse response defined as:

QIR (h) = W. (2)

The QIR and the cQIR may differ even if the treatment and control variables are independent
(Y;, 1L X/). Furthermore, the same observation Y; ;y;, might fall below g5,(7 | y;, z) but above
qn(T | y;) or vice versa.

The structural mean impulse response can be defined as:

OE[Yitrn(y;)]

IR(h) = 5y,

: (3)

and the structural conditional mean impulse response can be defined as:

OE[Y; 14n(y;, x)]
y;

clR(h) = : (4)

10



The expectation and quantile operators have different mathematical properties, which
is why quantile and mean impulse responses behave differently under conditioning. To
illustrate this, consider a simple data generating process: Y = X; - W + X5, where X, X,
and W are all independently and identically distributed uniform random variables with W
representing an unobserved shock. The linearity of the expectations operator means that
E[Y | z1] = 21 - E[W] + E[X5] and E[Y | 21, 22] = 1 - E[W] + 5. After taking the partial
derivative with respect to xq, both expressions yield E[WW] making the IR and cIR identical.
This result generalizes to any model where the treatment variable and other covariates
enter additively?, the linearity of expectations ensures that the additive component drops
out when computing partial derivatives, regardless of whether it is conditioned on or not.
In contrast, qap5(7) # qa(7) + ¢p(7) for random variables A and B unless A and B are
comonotonic (Koenker 2005). After conditioning on both X; and X, they become constants,
5O qy (T | X1, 22) = Guywa, (T) = @1 - qw (7) + 22 by the affine property of quantiles. Taking

Ogy (7|1,

the partial derivative with respect to z; then yields B 2) — qw (7). However, after

conditioning on X; = x; only, the conditional quantile gy (7 | 1) cannot in be written in

qy(7'|x1) — aqgcl-W+X2(T

3 5 ) depends on the distribution of the
1 1

separable form. Thus, the derivative 9
random variable x; - W + X, and differs from the conditional case. In effect, the coefficients
on X; from quantile regressions on X; only versus on X; and X, will differ, even though
X, and X5 are independent. Adding covariates that are uncorrelated with the treatment to
conditional mean models never changes the coefficient on the treatment variable as per the
Frisch-Waugh-Lovell theorem, but this theorem does not apply to quantile regression.
Comparing equations 1 and 3, the QIR and mean impulse response share the same
structure but target different aspects of the outcome distribution. While the mean impulse
response captures how treatment affects the expected value, the QIR describes how treatment
affects specific quantiles. Both the QIR and IR should be interpreted as responses to shocks

that cause a one-off time-¢ unit change in the treatment variable, consistent with the local

2In models where the covariates do not enter linearly, Generalized IR functions that are a function of the
covariates are needed and a simple linear model is misspecified.
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projections literature. This interpretation differs slightly from SVAR impulse responses,
which measure responses to unit variance innovations, so comparisons with SVAR impulse
responses require scaling by an appropriate constant of proportionality (Plagborg-Mgller and
Wolf 2021).

A word of caution is in order when dealing with cumulative quantile impulse responses. To
calculate cumulative impact on growth in the level of the variable of interest (e.g. Industrial
Production IP,) using local projections, the outcome variable is usually transformed to
Yitin = log(IPiyp) —log(IP,—1). This is also the transformation used in this paper. This
transformation is innocuous in the case of the mean impulse response as linearity of the
expectations operator ensures that the cumulative effect equals the sum of period-by-period
effects. However, quantiles of sums generally do not equal sums of quantiles. For example,
the effect on the median annual growth rate will not generally equal to the sum of the
effects on the 12 consecutive median monthly growth rates. Therefore, when Y; ;) represents
cumulative growth, the quantile impulse response describes how treatment affects the 7
quantile of the h-periods-ahead cumulative growth distribution, not the sum of consecutive
period effects.

To motivate QIR analysis it is instructive to discuss in what class of models the QIR is
not equal to the mean impulse response. In particular, I state a quantile invariance result
that proves that in a rich class of models quantile impulse responses are the same for each
conditional and unconditional quantile and equal to the mean impulse response. This result is
useful for two reasons. First, it establishes a lower bound on model complexity necessary for a
model to exhibit non-trivial quantile dynamics. This has implication for theorists interested in
writing models which feature interesting quantile impulse responses consistent with empirical
evidence. Second, it cautions against overly restrictive identifying assumptions for quantile
impulse response identification, as that could lead to a paradox in which identification relies

on assumptions that imply quantile invariance.
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Suppose the process Y; € R* admits a structural Wold representation of the form
o0
Y=Y W,
§=0

where W; € RF are orthogonal innovations satisfying E[W;] = 0, E[W,W/] = 1, and
EW,W!] = 0 for all t # s. The marginal treatment effect of a shock in variable j at
time ¢ on variable ¢ at horizon h is then

OE [Y;,t—kh(wj)]

o, = [Wnliy-

Additionally assuming Gaussian innovations, i.e. W; ~ A(0, 1), implies that the components

of W, are independent over time and across variables.

Theorem 2 (Quantile Invariance Theorem). If {Y;} has a structural Wold representation

with Gaussian innovations, then for all quantiles 7 € (0,1) and all horizons h,

cIR(h) = IR(h) = QIR (k) = cQIR,(h)

As any purely nondeterministic, zero-mean covariance stationary process has a Wold
representation, and since invertibility means it is possible to orthogonalize innovations, the
most restrictive assumption in Theorem 2 is the Gaussianity of innovations. Critically, if the
underlying data-generating process is non-linear, it may not admit a Wold representation
with Gaussian innovations even if the structural shocks driving the process are Gaussian.
For instance, processes with stochastic volatility (like the example in section 3.1) have
Wold representations but with non-Gaussian innovations. As such, Theorem 2 tells us that
breaking quantile invariance requires either departures from Gaussian innovations, linearity
or covariance stationarity. However, these departures are not sufficient conditions for quantile

non-invariance. For instance, non-Gaussian but i.i.d. symmetric innovations in a linear
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process may still exhibit identical responses across quantiles. The proof of Theorem 2 follows
from the linearity of the Wold representation and the independence of Gaussian innovations.

The full proof is in Appendix A1.2.

2.3 Quantile Impulse Response identification

If the observed treatment Yj, is randomly assigned i.e. U, yn(y;) | Yje ~ Uirrn(y;) ~
Uniform[0, 1], then a quantile local projection model Y; ;1n = qn(Uis4n | Y;¢) estimated using
a standard quantile regression restriction P(Y; 1 < qn(7 | Y;:) | Yj4) = 7 identifies the
QIR as defined in equation 1. In non-experimental settings typical in macroeconomics, an
endogeneity problem arises because the realized treatment Yj, is not randomly assigned. I
address the endogeneity problem with an identification by controls strategy. In particular,
I relax the assumption that U;.1n(y;) | Yje ~ Uirin(y;) and replace it with U;qn(y;) |
Vi, Xo ~ Uipn(y;) | Xi.® In other words, I assume that the treatment is conditionally
on (observable) controls randomly assigned. Consistent with assumption 5, I think of the
observed treatment as a function of the observable controls and an unobserved structural
shock Wj,, ie. Y, = ¢g;(X;,W,,). As such the object of causal analysis is the quantile
impulse response to a structural shock to the treatment variable.

The Frisch-Wough-Lovell theorem does not apply to quantile regression making disentan-
gling effect of controls on identification versus interpretation more difficult. In particular,
the quantile local projections model with controls Y, = qu(Uf,), | Yje, Xi) estimated
using a restriction P(Y; iy < qn(7 | Yje, Xt) | Y4, Xi) = 7 deals with the endogeneity issue,
but estimates a different structural function ¢, (7 | y;,«) instead of ¢5(7 | y;). As such it
estimates the cQIR defined in equation 2 instead of the QIR defined in equation 1. The

addition of controls into the equation changes the interpretation of the model. As such,

even in cases when the treatment is randomly assigned, inclusion of control variables could

3Note that this allows for the rank variable to have different distributions for different values of the controls
X;. Le. the controls can help predict whether the outcome will be below /above its conditional (on treatment)
quantile.
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change the quantile regression coefficients on the treatment variable. Note also that the
conditional on controls rank variable U, (y;, ) is distinct from Us 4,1 (y;). In particular,
Uitrn(ys) = MXe, Uiy, 1, (y5, 7)) for some function A that depends on the fixed treatment and
the horizon, but not time.

Exploiting control variables for causal identification while still modeling the conditional
on treatment only SQF ¢, (7 | y;) is possible thanks to the Powell 2020 generalized quantile
regression estimator, which explicitly distinguishes between treatment and control variables.
One of the contributions of this paper is to adapt this cross-sectional framework to the
time-series setting. In what follows I only consider identification by controls, Powell 2020
also considers identification using instrumental variables making extension of GQLP to
instrumental variable designs straightforward. To identify quantile impulse responses one

more assumption is needed:

Assumption 7 (Rank Similarity). For all y;,yi: P[Yien(y;) < au(7 | y5) | Ve, Xi] =

P[K-,Hh(y;) < qu(T | y;) | Y‘,tth]-

The rank similarity assumption 7 posits that, conditional on current observables the rank
of the potential outcome within its distribution does not systematically vary with different
realizations of the treatment variable. In other words, if we know the current treatment
and controls, whether a time period would have a high-rank or low-rank outcome does not
depend on which treatment value we are considering. For example, if economic conditions
suggest a period would experience an above-median outcome given one treatment value, those
same conditions suggest it would also experience an above-median outcome for a different
treatment value (though the median levels themselves would differ). It is a key assumption
for identification, along with assumptions 3 and 5, which taken together establish conditional
(on controls) independence of the treatment assignment.

Before stating the moment conditions used to recover the QIR, I reformulate the Theorem
1 from Powell 2020 except in the time series setting. The proof of the theorem is in the

appendix section A1.3.
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Theorem 3. Suppose Assumptions 1 through 7 hold Yh, then Vh € {0,1,2,..., H} and for
each 7 € (0,1):

PlYirn < qn(m | Yie) | Yie, Xel = P[Yion < qu(7 | V) | Xi,

PlYioon < (7| Yje) =7

The first equation in theorem 3, states that after conditioning on controls X;, the
treatment Y} ; does not provide additional information about the probability that the outcome
is below its quantile function. The second equation in theorem 3, ensures that the quantile
function is correctly scaled. Together, these equations imply that the conditional probability
PlYiitn < aqn(7 | Y;e) | Xi] is allowed to vary based on controls X;, but in expectation
it is equal to the quantile level 7. When there are no control variables in the model (i.e.
X; = 0), the two conditions in theorem 3 collapse into one standard quantile regression
restriction P[Y; 11n < qn(7 | Yj4) | Yji] = 7. This restriction is used to estimate QIRs in
the quantile local projections framework. As such, quantile local projections are a special
case generalized quantile local projections, corresponding to a setting where all the model
variables are treatment variables and there are no controls. Therefore, GQLP “nests” the
QLP framework.

Theorem 3 provides the moment conditions needed for the estimation of the generalized
quantile local projections. In particular, it implies two moment conditions for each horizon

h €{0,1,2,..., H} and quantile 7 of interest:

E[Y;e[1{Yien < au(7 | Yie)} = P(Yiern < qn(7 | Yie) | X0)]] =0,

E[1{Yin < qu(m | Yie)} — 7] =0,

where 1{} is the indicator function that equals 1 if the condition in braces is true and 0
otherwise. Estimation is done separately for each horizon h and each 7 as in the quantile local
projections. For a given h and 7 and assuming a linear specification g, (7 | y;) = o (7)+Br(7)d,

estimation proceeds in three steps:
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1. Postulate a candidate 3, (7). For each candidate [,(7) there exists an intercept éy,(7)

such that P(Y; 145 < (1) + Bi(7)Y;+) = 7. This means that we need to search over the

slope coefficients only.

2. Given the pair (G (7), Bx(7)), estimate a linear probability model (Logit or Probit could
also be used) for the event that Y;yn < apn(7) + Bh(T)YN as a function of controls X;.

Save the predicted probabilities as Ty,.

3. Bh(T) = argming ., g'Ag, where g = %Zthl Y[ WH{Yisen < an(1) + Yj,téh(f)} — 7x,]-
A= [E(gg)]™" is the optimal GMM weighting matrix constructed using starting values

from standard quantile regression of Y; ¢y, on Y.

Note that misspecification in the binary outcome model of step 2 does not pose issues for
identification, as long as the misspecifcation errors are orthogonal to the treatment variable.
For more details about the estimation algorithm I refer the reader to Powell 2020.

I calculate confidence intervals using moving block bootstrap, the description of the
algorithm is in the appendix section A2. This procedure preserves the time-dependency
by resampling blocks of M consecutive observations instead of resampling individual time
points (Kilian and Liitkepohl 2017). After re-estimating the model B times using these
pseudo-samples, the confidence intervals are based on the distribution of the estimated
parameters across the B replications of the procedure. I test the coverage of the confidence

intervals obtained using this method in the Monte Carlo study in section 3.1.
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3 Monte Carlo

3.1 Endogenous Volatility SVAR

Consider a SVAR(1) augmented by an endogenous volatility term:

1+ ¢/exp(Yi1) W
it

Yie=a111Yi1-1 +a112Y6-1 + 1+ 0

Yie+ ao2eYir = a1 Yip1 + ar02Yj0 + Wiy
Where, W, W;, YN (0,1) are unobserved independent structural shocks. If parameter
¢ = 0 the model collapses to a standard SVAR with Y;, ordered first (Y;,; predetermined with
respect to Yj,). When ¢ > 0 the stochastic endogenous volatility term y/exp(Yj,_1) creates
a relationship between Yj;_; and the volatility of Y;,. This generates volatility dynamics that
give rise to a skewed ergodic distribution of Y;; and QIRs that vary across quantiles. The

mean impulse responses in this model do not depend on the value of the volatility parameter

¢, they are the same as in the linear SVAR (case when ¢ = 0).

parameter\aul 122 Q112 Q121 Qo2 @

value 105 -0.1 -025 -0.1 -02 4

Table 1: Model parameters used in the simulation.

Although this is not an economic model, to keep the discussion less abstract, think of Y,
as output growth and Yj; as the change in financial conditions (with positive values meaning
tightening financial conditions). Thus, if ¢ > 0 tightening financial conditions lead to an
increase in the volatility of output growth. This endogenous volatility together with the
negative relationship between the two variables generates an output growth distribution that
is left skewed, consistent with empirical evidence.

To study the cumulative impulse responses of the level of output I define a transformed

c

dependent variable Y% ,, = Z?:o Yii+;. The structural mean impulse responses can be

identified using local projections with appropriate timing restrictions (Jorda 2005; Plagborg-
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Mpgller and Wolf 2021). Estimating by least squares separately for each h € {1,2,... H}:
Yo =an+ Y0 + X, 0+ cigin

with X; = {Yi+,Y;+-1,Yi—1}, Bn recovers the structural mean impulse response. I know
which variables need to be included in X; from looking at the equation for Y;; in the data
generating process and using the fact that Y;, = ¢;(X;, W;,). The inclusion of the controls
vector X; is necessary as Yj; is endogenous. Failing to include the correct variables in X;
would result in biased estimates of the impulse response. If the structural shock W;; were
directly observable, replacing Y;; with W, as the treatment variable would identify the
structural impulse response without the need for controls X; (although their inclusion may
still be desirable to improve the precision of the estimates).

When interest lies in identifying the QIR as defined in equation 1, employing the Koenker
and Bassett 1978 estimator in a local projections setting might not be enough. Firstly, a
linear quantile regression may be misspecified if the functional form of the SQF ¢, (7 | y;)
is not linear. In short time-series typical in macroeconomics, nonparametric estimation of
the SQF may be unfeasible, especially for more extremes quantiles. For a given model for
the underlying data generating process we can try to characterize the implied functional
form of ¢, (7 | y;). Depending on the model, a closed-form solution for the SQF may be hard
to find from the model’s equations. For example, a linear SVAR model (case when ¢ = 0)
has linear SQFs for endogenous variables to structural shocks. Furthermore, SVAR quantile
impulse responses equal to the mean impulse response for all quantiles. On the other hand,
the stochastic volatility SVAR (¢ > 0) which features non-trivial QIRs — ones that vary with
depending on the quantile 7 — also features nonlinear SQF's for some quantiles and horizons.
Even if the model implied SQF might be hard to characterize in closed-form, the shape of
the SQF can be recovered from simulating the model.

The simulation algorithm follows from the definition of potential outcomes and the SQF'.

Potential outcomes can be generated based on either assignment counterfactuals Y; ;1 (w;) or
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Fitted quadratic SQF using QR

Figure 1: Simulation results for the first horizon SQF ¢, (7 | y;). The top-left panel plots
the simulated quantiles of potential outcomes Y%, ,(y;) over a grid of values y; for quantiles
7 € {0.10,0.50,0.92} (obtained from MC = 100,000 simulation repetitions). The other two
panels re-plot these simulated quantiles, with the overlayed solid lines showing the fitted
SQF using a quantile regression of Y, on the structural shock W;; for the same three
quantiles. The fit in the top-right panel comes from a linear quantile regression while the
bottom panel fit comes from a quadratic quantile regression. The regression coefficients used
to plot the fitted SQFs are averaged estimates from a Monte Carlo simulation with M C = 100

replications and time-series of length 7" = 500 (after dropping 1,000 initial observations).

counterfactuals relating to a realization of another endogenous variable Y; ;1 (y;). The first

method involves letting the model run for a number of periods before fixing the structural
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shock in one period to W, = w; for a grid of values, then simulating forward for each w;
grid value and computing the empirical quantiles of Y; ;4 (w;). This recovers the quantile of
the potential outcomes Y; ;1 (w;) as a function of the fixed assignment wj, i.e. the SQF. The
second method is the same except it requires forcing the endogenous variable to take a value
Y;+ = y;, which — to remain consistent with the structural equations — requires choosing the
shock value that solves the structural mapping y; = g;(w;, X;) by setting w; = gj_l(yj, Xy).

Intervening on Yj; and intervening on W);, are conceptually equivalent, in that an
intervention on one can be expressed as an intervention on the other through the inverse
mapping gj_l. When the function g; is linear (as in the current example) the mapping
becomes particularly simple. In particular, if g;(W;,, Xy) = 0(X;) + «W,, with & # 0.
Solving for the shock gives W;; = gj_l(YN, Xi) = k1Y) — 0(Xy)], so Y;; = y; is equivalent
to setting W;, = w; = k[y; — 0(X;)].. Equivalently, compared to an unperturbed draw
{X;, W;,} that produced Y;, = 6(X;) + kW, the required additive perturbation in the shock
is 0 = K y; — Yj.]. In the current example that features an additive unit-slope (k = 1) this
further reduces to 0 = y; — Yj,, so fixing Y;; = y; is exactly the same as perturbing W;, by
adding 0 = y; — Y} ;. For nonlinear but invertible g; the same conceptual equivalence holds
(interventions map into one another via gj_l), but the mapping need not be an additive shift
and must generally be computed pointwise for each X;.

The top-left panel of Figure 1 shows the first horizon SQFs for three quantiles 7 €
{0.1,0.5,0.9}, recovered from simulations based on experimentally fixing Y;; = y; for a
grid of values for y;. Visual examination suggests that the SQF is quadratic for quantiles
7 € {0.1,0.9} and linear for the median 7 = 0.5. In a simulation setting, the structural
shock W;, is observable and statistically independent by construction. This suggest another
strategy to recover the true SQF by estimating a quantile local projection model Y%, =
qn(Uissn | Wji). Again, this requires either the knowledge of the functional form of the
SQF, or the use of some nonparametric method to approximate it. Alternatively, we could

(incorrectly) assume a linear specification, which although misspecified may nevertheless
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be a good approximation to the truth?. Figure 1 shows that a linear quantile regression
Y& = a(Uir) + B(Upy1)W;, does well at approximating the true SQF around W, = 0, but
is outperformed by a quadratic specification. If the nonlinearity of the quantile function is of
primary concern, higher order polynomial approximations could be used. Visual inspection
of the SQF for the first horizon response in Figure 1 suggests a quadratic specification is
sufficient. Fortunately, local projections are flexible making it is easy to add higher order
terms into the estimation equation.

Outside of simulation settings, the structural shocks W;,; are usually unobserved, so
researchers need to rely on the time-series of the endogenous model variables {Y;, X;} to
estimate the SQF. Figure 2 compares the performance of three quadratic models for the

estimation of the true SQF at horizon h = 1. The first is a model without controls estimated

using quantile regression given by:

)/;?t+1 = ap=1(Ups1) + Brp=1(Up1) Y + ﬁQ,h:l(UtJrl)th-

The second model adds controls X; into the estimation equation and uses the quantile

regression to estimate the parameters.

Yi,ctﬂ = ap=1(Up1) + Brn=1(Uss1) Y + 52,h:1(Ut+1)Y;’?t + XtTehzl(Ut+1)-

The third model also estimates the quadratic equation, but uses the controls X; for iden-
tification, while modeling the quadratic SQF that is not conditional on controls. This is
possible as my framework uses the generalized quantile regression of Powell 2020 instead of
the quantile regression of Koenker and Bassett 1978.

Comparing the performance of these three models in recovering the SQF shows that the
standard quantile regression is unable to recover the true shape of the SQF. The quantile

regression model without controls suffers from endogeneity bias, while the quantile regression

4 Angrist et al. 2006 study the properties of Quantile Regression under misspecification and show that it
minimizes a weighted mean-squared error loss function for specification error.
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GQR

Figure 2: Simulation results for the first horizon SQF ¢;(7 | y;). The diamonds, circles and
triangles are the same across the three panels and show the simulated quantiles of potential
outcomes Y, (y;) over a grid of values y; for quantiles 7 € {0.1¢,0.50,0.94}(obtained
from MC' = 100,000 simulation repetitions). The three panels compare the performance
of three estimators for the first horizon SQF. QR refers to the Koenker and Bassett 1978
estimator, GQR is the generalized quantile regression estimator introduced by Powell 2020.
The regression coefficients used to plot the fitted SQFs are averaged estimates from a
MC = 1,000 simulation replications and time-series of length 7" = 500 (after dropping 1,000
initial observations).

model with controls estimates a conditional SQF. On the other hand, the generalized quantile

regression estimator targets the correct (unconditional on controls) SQF, while simultaneously
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being able to address the endogeneity of the treatment in a controls-based identification

strategy.

-1.5
1

Horizon h Horizon h
QLP without controls QLP with controls

o 1 2 3 4 5 6 7 & 9 10
Horizon h

GQLP

Figure 3: Simulation results for the cumulative quantile impulse response. The diamonds
o, circles o and triangles » are the same across the three panels and show the (linear
approximation to the) true quantile impulse response as estimated by Y5, = an(Uis4n) +
B (Ui p+n)Wi4, for quantiles 7 € {0.10,0.50,0.92}. Solid lines show the results from the three
estimators considered. QLP refers to the quantile local projection framework which uses the
Koenker and Bassett 1978 estimator. GQLP is my local projections based framework which
builds on the generalized quantile regression estimator introduced by Powell 2020. Results
are averaged over M C' = 1,000 simulation replications, with a time-series of length 7" = 500
(after dropping 1,000 initial observations). Y-axis plots (3, (7) and x-axis shows the horizon h.
Shaded areas show the Monte Carlo standard error of the estimator equal to the estimate +
one standard deviation across the M C = 1,000 Monte Carlo iterations.

Since nonlinear SQFs imply that the QIRs will vary not only with the quantile but

also with value of the treatment variable, they make plotting and analyzing the QIRs more
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complicated. Thus for the sake of simplicity, a linear model may be deemed preferable even
if it is misspecified. Ignoring the nonlinearity of the SQF for the moment, an approximation

to the QIR can be recovered as the (3, from the quantile local projection:
}/;?tJrh = an(Uisn) + Bu(Uigrn) Wiy

This simple strategy is possible in a simulation setting where the true structural shock
W is observable and by construction independent (U; 44y | Wi ~ U, 141), making controls
redundant for causal identification. A reasonable goal for an estimator of a structural QIR
would be to recover the same QIR using only the time-series of the observed endogenous
model variables {Y;;, Y.}, similarly to how local projections identify the structural mean
impulse response when the correct set of controls is included. Figure 3 shows that quantile
local projections fail at achieving this goal.® In particular, a quantile local projection model

without controls:

Yiin = an(Usen) + Br(Uisrn) Y,

suffers from endogeneity of Y}, and as expected it fails to recover the structural QIR. Perhaps
more surprisingly, a quantile local projection with the correct controls X; = {Y;;, Y; 1, Y1},
given by:

Yiin = an(Uigsn) + Bu(Uign)Yie + X{ 00 (Ui i),

solves the endogeneity of Y, problem, but in doing so models a conditional on controls SQF
which has a different meaning than the conditional on treatment only SQF. In effect, it
recovers the cQIR rather than the QIR, which in this case are not equal.

The GQLP estimator models the unconditional SQF, while still addressing the endogeneity
of Y;;. Assuch, GQLP with the dependent variable Y, ,, treatment variable Y;, and controls

Xy = {Yi1,Yji-1,Yiu1} recovers the same QIRs as the (unfeasible in practice) QLP of Y5,

5In the appendix section A3, I provide a table that compares the mean bias and root mean squared error
of the three estimators up to horizon 10, to complement Figure 3.
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on the structural shock W; ;. Shaded areas on Figure 3 plot the Monte Carlo standard errors
of the estimators. It is clear from the plot that GQLP suffers from slightly higher estimation
uncertainty than QLP at the short horizons, at which QLP is also biased. Meanwhile, at
longer horizons where both estimators recover the unbiased effect, the standard errors are

almost identical.

Nominal Level
Quantile Horizon | 68 % 90 % 95 %
1 1%  89%  94%
0.1 5 68%  91%  96%
10 0%  89%  94%
1 67%  92%  95%
0.5 5 69%  90%  95%
10 70%  91%  95%
1 68% 8%  93%
0.9 5 0%  89%  96%
10 2%  91%  96%
Average coverage | 69.4% 90.0% 95.0%

Table 2: The table reports the coverage of moving block bootstrap confidence intervals
for three quantiles, three horizons and three nominal confidence levels. The coverage was
computed in a Monte Carlo simulation with M C' = 500 repetitions, with sample size T" = 500
and B = 1000 Bootstrap repetitions. The block size used in the bootstrap procedure was the
same as in the empirical results section and equal to m = 7.

Table 2 reports the coverage of the moving block bootstrap confidence intervals (CIs) for
three horizons h € {1,5,10} for the GQLP estimator. The algorithm used to compute the
ClIs, for which coverage is reported here, is the same as the one used in the empirical section
and is described in the appendix section A2. Coverage was calculated by computing the Cls
for the QIR at three selected horizons and three quantiles of interest 7 € {0.1,0.5,0.9} over
500 Monte Carlo simulation repetitions, and then recording the percentage of repetitions in
which the true value of the estimator lay inside the CI. If the confidence intervals are correctly
sized, the coverage should be close to the nominal level. The results in Table 2 suggest that
the bootstrap confidence intervals are indeed correctly sized. The small deviations from the

nominal levels are well within the Monte Carlo uncertainty (approximately +4 pp at 68%,
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+2 pp at 90%, and +2 pp at 95%). Moreover, the average coverage across quantiles and
horizons is essentially equal to the nominal levels, further confirming that the intervals are

appropriately calibrated.

3.2 Nonlinear DSGE model

“A Macroeconomic Model with Financial Panics” of Gertler et al. (2019) is a fully micro-founded
nonlinear DSGE model that features bank panics and financial accelerator mechanisms. It is
solved globally and so it can be used as a nonlinear data generating process by sampling random
innovations. In the model households and bankers interact through capital accumulation,
adjustment costs, and an agency problem. Households can invest and manage capital but
incur convex adjustment and management costs; bankers finance their operations with their
net worth and household deposits, but face diversion risk and potential bankruptcy if their net
worth turns zero or negative. The only exogenous uncertainty in the model is a capital-quality
shock, while endogenous bank runs are triggered by sunspot disturbances whenever liquidation
prices fall sufficiently—reflecting households’ relative inefficiency at managing capital—to
push bank net worth below zero. Although the steady-state is free of bank runs, a sequence
of adverse capital-quality shocks can erode net worth and open the door to panic equilibria.
This is illustrated on Figure 4, which shows how the economy affected by a sequence of
negative capital-quality shocks can move from the steady state to a bank-run equilibrium if a
sunspot shock occurs.

Figure 4 was generated by Gertler et al. (2019) using a typical approach used in theoretical
macroeconomic modeling. It is based on a single simulation repetition and reports the impulse
responses to a so-called “MIT shock”. The “MIT shock” approach starts the economy at
steady state, then hits the economy with a one-off shock (or in this case sequence of three
shocks) while setting all other current and future shocks to zero. Notably, this type of impulse
response has no empirical counterpart. In empirical setting, researchers generally study the

counterfactual changes in the outcome of interest, averaging out over all other shocks rather
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Figure 4: From Gertler et al. (2019). Response of the economy to a sequence of three small
negative capital quality shocks combined with a sunspot that triggers a bank run. The plot
starts in period 2, economy is in steady state in period 0 then it experiences the three shocks
and no shocks thereafter.

than conditioning on them being zero (Kolesar and Plagborg-Mgller 2025).

To recover the structural quantile function (SQF) in this nonlinear setting, I follow the
same algorithm as for the SVAR model in the previous section. In each of the Monte Carlo
runs, I draw random realizations of the capital-quality and sunspot shocks over the first T+ h
periods, then I replace the realization of the capital-quality shock at date T" with each of the
grid values. This procedure generates potential outcomes of output for each fixed shock value
from the grid. Doing this many times recovers the distribution of the potential outcomes.
Then for a given quantile and horizon of interest, I simply compute the quantiles of the
simulated time T 4 h potential outcomes corresponding to each fixed grid point to recover the
SQF. The results of applying this procedure for the first horizon h = 1 and three quantiles

7 € {0.1,0.5,0.9} is presented in Figure 5. It is clear that the SQF for the extreme quantiles
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Figure 5: Structural quantile function of output to capital quality shocks at horizon 1, plotted
for quantiles 7 € {0.1¢,0.50,0.92}. X-axis shows the capital quality shocks (the variance of
the capital quality shocks is o = 0.005), output at horizon 1 is on the vertical axis. The results
are by simulating the Gertler et al. (2019) model for each shock grid point over M C' = 1,000
simulation repetitions.

7 € {0.1,0.9} is nonlinear. Moreover, in the case of the 7 = 0.1 quantile which captures the
downside risk to growth, the SQF does not look like it could be well approximated by a
quadratic function. Using higher order polynomials or nonparametric methods for estimation
of the SQF at extreme quantiles in small sample settings is unlikely to be yield satisfactory
results, as the precision of the estimates is likely going to be too low to draw any substantive
conclusions.

I compute the true QIR using a perturbation method. I sample random shocks for the
first T periods, at T' I create a counterfactual series where a small perturbation ¢ is added to
the capital quality shock.® I then simulate both the original and the counterfactual series

through T'+ H by drawing more random shocks. Finally, I compute the difference in the

T use 6 = 0.20 where o is the standard deviation of the capital quality shock. Theoretically § should be
an infinitesimally small perturbation, but due to rounding errors excessively small values are impractical.
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quantiles of 7'+ H output between the unperturbed and counterfactual series (and scale it by
0), i.e. 3lan(r | Wjs) — qu(7 | Wy, + 6)]. T assess the estimation performance of three models:
QLP with and without controls and GQLP, comparing each against the true QIRs. In all
specifications, I use the capital quality shock as an observed treatment variable. The controls
are the model’s state-variables, namely: bankers’ net worth, capital quality and lagged capital
stock. Since capital quality shocks are independent, the controls are actually not needed for
causal identification. However, in applied work the tendency is to include controls even in
settings where a possibly exogenous shock is observed. This generally poses little issue when
focus lies in identification of average treatment effects, but can have dramatic consequences
for identification of quantile treatment effects.

As shown on Figure 6, the GQLP estimator estimates the same QIRs as the QLP estimator
without controls. These QIRs do not exactly coincide with the counterfactual QIR as the
functional form of the model is misspecified. However, from the independence of the captial
quality shocks and approximation properties of QR (Angrist et al. 2006), we know that QLP
without controls identifies a linear approximation to the truth. On the other hand, QLP with
controls estimates a completely different QIR for the 7 = 0.1 quantile. The results of the
QLP model with controls could lead the researcher to conclude that there is no difference
across the responses of quantiles of outcome to the capital quality shock. The difference arises
because including controls means that the estimated QIRs are conditional on the state of the
economy, rather than unconditional. In the context of the Gertler et al. (2019) model, this
distinction is crucial. The unconditional lower quantiles capture episodes when the economy
is fragile and bank runs can be triggered, so they exhibit strong nonlinearities in response to
capital quality shocks. By contrast, once the state variables are conditioned on, the quantiles
reflect outcomes within given states of vulnerability or resilience. In this conditional setting,
the capital quality shock shifts the distribution of output more homogeneously, and the

extreme quantiles no longer display the same amplified downside responses.
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Figure 6: True QIR (dashed) versus estimated QIR (solid) under the linear specification for
quantiles 7 € {0.10,0.50,0.92}. Results averaged over M C = 1,000 simulations of length
T = 500 (after dropping 500 initial observations); horizons h = 1,.. ., 10.

4 Empirical Results

I apply the GQLP methodology to reexamine how financial risk shocks affect the distribution
of industrial production growth in the United States. The empirical exercise follows an
established literature that documents how adverse financial shocks disproportionately increase
downside risks to growth (Adrian et al. 2019; Chavleishvili and Manganelli 2024; Loria et al.
2025). My choice of financial risk variables — capturing credit and volatility risk — is motivated
by both theoretical considerations and empirical precedents. Theoretically, tightening financial

conditions can amplify economic downturns through multiple channels including credit market
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frictions that constrain firm investment when external finance premiums rise (Gilchrist and
Zakrajsek 2012), and uncertainty-driven real options effects that delay irreversible investments
(Bloom 2009). Previous studies have used similar financial indicators to identify these channels,
with Gilchrist and Zakrajsek (2012) focusing on the excess bond premium and Bloom (2009)
focusing on stock market volatility. By contrasting results from GQLP and QLP using these
indicators, I demonstrate that distinguishing between conditional and unconditional quantiles
is both statistically and economically important for understanding the causal drivers of
growth-at-risk.

My monthly dataset covers the US economy during the period between January 1984 and
June 2025 (T=498). All the data used is publicly available, with majority of it contained
in the FRED-MD database published by the St. Louis Fed (McCracken and Ng 2015). 1
use monthly data for a larger sample size, with Industrial Production as the dependent
variable. In particular, the dependent variable Y; ;, is defined as the h-months cumulative
log growth rate Y; ., = 100 * [log({ Pyyp) — log(IP;—1)]. T multiply the log growth rates by
100 to interpret the QIR in terms of percentage points. I normalize the treatment variable
Y;: to interpret the QIRs as responses to a one standard deviation change.

The first treatment variable Y}, I consider measures movements in credit risk. I will refer
to this variable as credit risk and I define it as the first-difference of the monthly Excess
Bond Premium (EBP) of Gilchrist and Zakrajsek 2012, i.e. Y;; = EBP, — EBP,_. The
EBP is the residual of corporate bond credit spreads that cannot be explained by movements
in expected default risk, as such it measures the investor sentiment or risk appetite in the
corporate bond market.

The second treatment variable Y;; I consider measures the volatility risk premium in
the equity markets, defined as the difference between realized and implied volatility of the
S&P500 index. I will refer to it as volatility risk for short. I compute realized volatility by
computing the standard deviation of daily returns (based on close prices) in each month. T

use the VIX as a measure of implied volatility. I normalize both variables before taking the
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difference. If option markets are efficient, implied volatility should be an efficient forecast
of future volatility, it should subsume the information contained in all other variables in
the market information set in explaining future volatility. Thus, Y;; = realized; — implied,
captures realized volatility that was unexpected by the financial markets (Christensen and
Prabhala 1998).

I order the financial risk variable after macroeconomic variables but before financial
markets and monetary policy variables. This assumes that financial conditions are affected
contemporaneously by macroeconomic shocks but respond with a lag to shocks to monetary
policy. Assuming that financial variables adjust quicker than real variables is justified by
the speed at which financial markets respond to news and is a common assumption in the
macroeconomic literature (Sims 1980; Christiano et al. 1996; Bloom 2009; Gilchrist and
Zakrajsek 2012; Chavleishvili and Manganelli 2024). My variables are ordered as follows:
{consumption growth, investment growth, industrial production growth, inflation, financial
risk variable Y;;, S&P500 monthly return, change in the ten-year (nominal) Treasury yield,
change in the effective (nominal) federal funds rate}. This ordering implies that controls
vector X; must include the contemporaneous values of the four variables ordered before the
treatment variable Y ;. Additionally, to control for the broad state of the economy in the
recent past, I include the first two lags of all eight variables contained in my ordering in Xj.
In short, my timing restriction assumption allows for financial conditions to adjust within
the period to consumption growth, investment growth, industrial production growth and
inflation, but not to the stock market return, changes of the Treasury yields and changes
to the Fed’s funds rate. To test the robustness of the conclusions to the timing restriction
chosen, I report results obtained using two alternative orderings in the appendix section A5.
In particular, I report results with the treatment variable ordered first and last.

Throughout, I focus on three quantiles 7 € {0.1,0.5,0.9}. The 7 = 0.1 quantile is
of primary interest as it measures downside-risk. I also report results for a richer set of

quantiles for four selected horizons, including the 7 = 0.05 quantile corresponding to the
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usual definition of GaR. To simplify the analysis | assume a linear specification for the SQF
an(7 | y;) = an(7) + Br(7)y;, this ensures that the QIR (h) = B1,(7) does not depend on y;. 1
choose a 90% confidence level for reporting the moving block bootstrap confidence intervals,

which are computed using a block length of 7 and 1,000 bootstrap replications.
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Figure 7: Cumulative response of Industrial Production (in % pts.) from a shock that increases
credit risk by one standard deviation, plotted for three quantiles 7 € {0.1¢,0.50,0.92}. Y-axis
is the estimated response Bh(r), x-axis is the horizon h in months. Dashed lines plot the
quantile impulse response. Shaded area is the moving block bootstrap 90% Confidence
Interval (with block length of 7, and 1,000 bootstrap replications). Note that the impact
response (horizon h = 0) is by assumption zero, given my timing restrictions.

Figure 7 shows the recovered QIRs of industrial production to a shock which increases
credit risk by one standard deviation. The upper-left panel in Figure 7 plots the QIRs for

the three quantiles on the same axis. It is clear that the response at the 7 = 0.1 quantile is
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much more pronounced than the response at the other quantiles considered. This is a feature
of the data and not of the model, as nothing is restricting the responses of lower quantiles to
be lower than those of the upper quantiles. For instance, a shock that lowers the variance of
a distribution would give rise to positive QIRs for quantiles below the median and negative
QIRs for quantiles above the median.

My findings suggest economically large and statistically significant (at 90% confidence
level) growth losses of about 2 percentage points when a credit risk shock propagates in a
low growth environment (7 = 0.1). The median losses (7 = 0.5) are considerably smaller at
around 0.5 percentage points. The upside-risk response (7 = 0.9) is similar to the median
response, except that the effect is not statistically significant beyond the fifteen months
horizon. The estimation uncertainty measured by the moving block bootstrap confidence
intervals increases with the horizon, it is also higher for the 7 = 0.1 quantile than the median
and the 7 = 0.9 quantile.

The four panels of Figure 8 report results of the same model estimated for a richer set of
quantiles (from 7 = 0.05 to 7 = 0.95 in 0.05 increments) for four fixed horizons (6-months,
1-year, 2-years and 3-years). It shows that at all four of these horizons the slope of the
structural quantile function is more negative for lower quantiles. The effect of financial shock
on growth is statistically significant but not for all quantiles. Quantiles below the median are
more affected by financial shocks and the effect is more likely to be statistically significant
even though it is estimated less precisely than the effect around the median growth scenario.
The confidence intervals for the GaR 7 = 0.05 quantile are considerably wider than for the
7 = 0.1 quantile, this is why the 7 = 0.1 quantile is often preferred as a measure of downside
risk.

Figure 9 shows the results of estimating the same model but using volatility risk in place
of credit risk as the treatment variable. Comparing Figure 9 to Figure 7 suggests that the
relationship between volatility risk shocks and growth is similar to the relationship between

credit risk shocks and growth. The timing and magnitude of the quantile impulse responses
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Figure 8: Responses of Industrial Production (in % pts.) to a shock that increases credit risk
by one standard deviation, plotted for three horizons h € {6,12,18,24} (panels from top left
to bottom right). The responses were estimated for quantiles from 7 = 0.05 to 7 = 0.95 in
0.05 increments. Y-axis is the estimated response Bh(T), x-axis is the quantile 7 (multiplied
by 100 for legibility). Shaded area is the moving block bootstrap 90% Confidence Interval
(with block length of 7, and 1,000 bootstrap replications). Blue dashed line reports the
response of the mean estimated from conventional local projections.

are almost identical following increases in volatility risk and credit risk. Both volatility and
credit risk affect down-side more than upside-risk. The similarities are striking considering
the fact that the sample correlation coefficient between these two variables is very low at 0.1.
These findings suggest either the existence of a common non-linear propagation mechanism
(as argued for by Loria et al. 2025) or the fact that it is the overall financial conditions — of

which credit and volatility are both components — that have an asymmetric effect on the
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Figure 9: Cumulative response of Industrial Production (in % pts.) from a shock that increases
volatility risk by one standard deviation, plotted for three quantiles 7 € {0.1¢,0.50,0.94}.
Y-axis is Bh(T), x-axis is the horizon A in months. Dashed lines plot the quantile impulse
response. Shaded area is the moving block bootstrap 90% Confidence Interval (with block
length of 7, and 1,000 bootstrap replications). Note that the impact response (horizon h = 0)
is by assumption zero, given my timing restrictions.

distribution of output growth.

As before, I report the results for more quantiles at four fixed horizons for the volatility risk
in Figure 10. Figures 8 and 10 are nearly identical. Again, this implies that the relationship
between financial shocks to the left-tail of growth does not depend on whether the shocks
pertain to credit risk or volatility risk.

To highlight the practical implications of using QLP versus GQLP in the context of GaR,

I compare the results obtained using both methodologies side by side on Figure 11. Figure

37



0 é 1b 1‘5 2‘0 2‘5 3‘0 3‘5 4b 4‘5 5‘0 5‘5 éO 65 7b 7‘5 8‘0 8‘5 dO 9‘5 160 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
100t 100t
(a) 6 months (b) 1 year
N A N

S
@
ﬁ" .
© ©
(5 é 1b 1‘5 2‘0 2‘5 3‘0 3‘5 4b 4‘5 5‘0 5‘5 6‘0 6‘5 7b 7‘5 éO 8‘5 9‘0 9‘5 160 (I) é 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 5‘0 5‘5 6‘0 6‘5 7‘0 7‘5 8‘0 8‘5 9‘0 9‘5 160
100t 100t
(c) 18 months (d) 2 years

Figure 10: Responses of Industrial Production (in % pts.) to a shock that increases volatility
risk by one standard deviation, plotted for three horizons h € {6,12,18,24} (panels from
top left to bottom right). The responses were estimated for quantiles from 7 = 0.05 to
7 =0.95 in 0.05 increments. Y-axis is the estimated response Bh(T), x-axis is the quantile 7
(multiplied by 100 for legibility). Shaded area is the moving block bootstrap 90% Confidence
Interval (with block length of 7, and 1,000 bootstrap replications). Blue dashed line reports
the response of the mean estimated from conventional local projections.

11 plots response of quantiles from 7 = 0.05 to 7 = 0.95 in 0.05 increments at the one-year
horizon. The estimated shape of the quantile function (315(7)) tells us how much asymmetry
there is in the response of different parts of the one-year ahead output growth distribution
to a financial shock. A flat line would suggests that all quantiles of the distribution are
affected equally meaning that the effect of a financial shock is a local shift of the output

growth distribution, implying that quantile analysis is redundant. The fact that the line
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is upwards sloping means that financial shocks skew the output growth distribution to the
left making large negative growth realizations substantially more likely. By comparing the
estimates from GQLP versus QLP it is clear that GQLP estimates vary more across quantiles
suggesting larger asymmetry between effects of financial shocks on downside versus median
and upside growth scenarios. As the reported results from GQLP and QLP are based on
the same timing restrictions and the same data, the difference in the estimates comes from
the fact that GQLP captures the effect on unconditional quantiles while QLP captures the
effect on conditional on controls quantiles. This means that volatility and credit risk shocks
have a larger negative effect on unconditionally low quantiles of growth than on conditionally
low growth quantiles. Therefore, relying on conditional quantile models can understate the
importance of these shocks as causes of recessions.

Table 3 compares the estimates obtained from QLP versus GQLP for two horizons
h € {12,24} and three quantiles 7 € {0.1,0.5,0.9} using four different lag length specifications.
[ use this opportunity to point out another potential advantage of GQLP as a tool for quantile
impulse response analysis. Since GQLP allows for inclusion of covariates for identification
without affecting the interpretation of the coefficient on the treatment variable, it is less
sensitive to potentially arbitrary modeling choices such as the choice of how many lags to
include. In fact, for each quantile and horizon in table 3 the standard deviation of the
estimated response across the 4 different lag length specifications is greater for the QLP than
the GQLP estimator. At the 10th quantile, QLP estimates exhibit considerable sensitivity
to lag specification, with credit risk effects at the 12-month horizon varying from —0.55
to —0.94 percentage points and from —0.99 to —1.54 at the 24-month horizon, a range of
0.39 and 0.55 percentage points respectively. For the same quantile and horizons the range
of estimates obtained by GQLP is within 0.1 percentage point. For volatility risk both
estimators are more sensitive to the choice of lag length, but GQLP estimates are still more
stable. Notably, GQLP tends to identify more negative effects at the lower tail (with the

exception of the 24-month horizon for volatility risk), suggesting that conditional quantile
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Figure 11: Responses of Industrial Production (in % pts.) to a shock that increases credit
risk (top panels) or volatility risk (bottom panels) by one standard deviation, plotted for the
one year ahead horizon (h = 12). The responses were estimated for quantiles from 7 = 0.05
to 7 =0.95 in 0.05 increments using GQLPs (left panels) and QLPs (right panels). Y-axis
is the estimated response f12(7), x-axis is the quantile 7 (multiplied by 100 for legibility).
Shaded area is the moving block bootstrap 90% Confidence Interval (with block length of
7, and 1,000 bootstrap replications). Blue dashed line reports the response of the mean
estimated from conventional local projections. All models include the same variables, assume
the same ordering, and have the same lag length specification.

analysis may underestimate the magnitude of adverse impacts during economic stress periods.

To facilitate comparison with previous studies, I focus on the effects at the twelve-month
horizon for the median and the 10th quantile. My findings indicate that a one-standard
deviation shock to credit or volatility risk lowers the 10th quantile of growth by approximately

1.5 percentage points, while the losses for median growth are around 0.5 percentage points.
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Quantile Horizon Lags Qggedltgr(ﬁfp \(S};tlhg(gsﬁ
1 -0.94 -1.37 | -0.22 -1.44

12 2 -0.92 -1.43 | -0.18 -1.51

3 -0.64 -1.33 | -0.03 -1.46

0.1 4 -0.55 -1.33 | -0.33 -1.44
' 1 -1.32 -1.69 | -2.04 -1.61
94 2 -0.99 -1.69 | -1.53 -1.22

3 -1.54 -1.73 | -1.64 -1.02

4 -1.29 -1.73 | -1.22 -1.02

1 -0.44 -0.57 | -0.22 -0.17

12 2 -0.50 -0.42 | -0.36 -0.21

3 -0.30 -0.34 | -0.45 -0.26

0.5 4 -0.33 -0.42 | -0.36 -0.30
' 1 -0.61 -0.66 | -0.20 -0.24
94 2 -0.35 -0.55 | -0.76 -0.24

3 -0.32 -0.50 | -0.50 -0.06

4 -0.20 -0.44 | -0.63 -0.06

1 -0.84 -0.63 | -0.28 -0.22

12 2 -0.62 -0.63 | -0.33 -0.29

3 -0.77 -0.63 | -0.19 -0.29

0.9 4 -0.90 -0.83 | -0.25 -0.26
' 1 -0.62 -0.28 | -0.33 -0.24
94 2 -0.69 -0.29 | -0.43 -0.42

3 -1.03 -0.08 | 0.10 -0.52

4 -0.50 -0.17 | -0.54 -0.47

Table 3: Responses of Industrial Production (in % pts.) to a shock that increases credit risk
or volatility risk by one standard deviation, computed for two horizons h € {12,24} and
quantiles 7 € {0.1,0.5,0.9}. Lags refers to the number of lags included as covariates (2 lags is
the baseline specification). QLP refers to the quantile local projection framework which uses
the Koenker and Bassett 1978 estimator. GQLP is my local projections based framework
which builds on the generalized quantile regression estimator introduced by Powell 2020.

To the best of my knowledge, this paper is the first to identify the effects of financial shocks
on unconditional quantiles of growth, so there are no directly comparable findings. However,
a rich literature studies this relationship using conditional quantile models. Adrian et al. 2019,
in a quantile regression of one-year-ahead GDP growth on National Financial Conditions Index
(NFCI) and current GDP, find losses from a one-standard-deviation increase in NFCI of 1.75
and 0.75 percentage points for the 7 = 0.1 and 7 = 0.5 quantiles, respectively. Importantly,

the authors do not assign causal interpretation to these estimates as they do not control for
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lags in the regression. Ruzicka 2021 uses QLP (with smoothing) to estimate the effects of
NFCI on GDP growth using quarterly data from 1973 to 2015, finding losses of approximately
2.5 and 1.5 percentage points for the 7 = 0.1 and 7 = 0.5 quantiles, respectively. Loria et al.
2025 study the effects of the EBP on Industrial Production growth using their two-stage
methodology. They rescale responses across quantiles such that the median falls by 25 basis
points on impact, making direct magnitude comparisons difficult. However, we can compare
the ratio of the 10th quantile response to the median response, which Loria et al. 2025 report
as 3.7 (averaged over the first year). I find this ratio equals 2.8 for credit risk shocks and 4.1
for volatility risk shocks. Loria et al. 2025 examine the effects of various shocks on growth
and find similar asymmetries, suggesting a common, non-linear propagation mechanism. This
hypothesis is consistent with my findings that volatility risk and credit risk shocks have nearly
identical quantile impulse responses despite being practically uncorrelated. For the euro
area, Chavleishvili and Manganelli 2024 use a quantile vector autoregression to study the
effects of shocks to the composite indicator of systemic stress (CISS) on euro area industrial
production growth, reporting considerable asymmetry with downside risk losses exceeding
median losses by a ratio of approximately 4. Chavleishvili et al. 2021 reach similar conclusions

using Bayesian methods.

5 Conclusion

Conventional econometric methods that model the mean impulse responses of growth to
financial shocks can underestimate the true importance of financial shocks as causes of
recessions. This is widely appreciated by academics and policy-makers alike, which explains
why a lot of research effort is put devoted to understanding the downside risks to growth.

I offer a new methodology to identify the causal drivers of growth-at-risk. My identification
strategy is based on controls, yet it identifies treatment effects on unconditional quantiles.
In my view, the distinction between conditional and unconditional quantiles of growth is

important in the context of GaR. Conditionally low growth rates map to periods when the
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economy under-performs expectations, for example in a favorable macroeconomic climate
this would mean high-yet-disappointing growth. On the other hand, unconditionally low
growth rates always map to downturns and recessions, and as such are of primary concern for
policymakers and academics. My framework allows to study the latter while using familiar
controls-based identification strategies based on timing restrictions.

Understanding the structural drivers of growth vulnerability can help discipline theoretical
work and macroprudential policy efforts. My empirical findings show that financial shocks
have very large effects on downside risks with little upside. This suggests that stabilizing
them can help avoid painful recessions, without large growth losses during the expansions.

Several avenues for future research emerge from this work. First, the methodology could
be extended to incorporate instrumental variables identification strategies. This extension is
straightforward given that the generalized quantile regression estimator of Powell 2020 that
underlies GQLP accommodates instrumental variable identification. Second, future research
could extend smoothing techniques to the GQLP framework, similar to how Ruzicka (2021)
applies smoothing to QLP, building on the smooth local projection approach of Barnichon and
Brownlees (2019). Third, the framework offers promising applications beyond growth-at-risk
analysis. One potential application of GQLP could be to study inflation-at-risk, examining
how monetary policy shocks differentially affect inflation outcomes in high versus low inflation
environments. Such analysis could provide valuable insights into the asymmetric transmission
of monetary policy and inform optimal policy design across different inflationary regimes.
Another application where GQLP could provide novel insights is studying how the size of the
fiscal multiplier changes depending on whether the government spending shocks occur during
expansions versus contractions. Such insights could enhance the effectiveness of fiscal policy

in supporting growth by informing the optimal timing of government spending.
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Appendix

A1l Proofs

Al1.1 Proof of theorem 1

Using conditional independence, I write:

Em,whl{yj,t = yj} | Xt] = Em,tJrh(Wl:Hh)l{Yj,t = yj} | Xt]

= E[Yiern(g;  (y;, X)) {0 = y;} | X4,
Expand via expectation and covariance:

= E[Yi,wh(g;l(yjaxt)) | Xt] E[l{y},t = yj} ’ Xt]

+ Cov(Yiern(g; ' (y5, X)), H{Yje =y} | Xo).
Under conditional random assignment, the covariance is zero

E[Yz‘,t+h1{y},t = ?Jj} | Xt}

=E[Y;n(g; (15, X0)) | X B[L{Y;, = y;} | X4

Use the identity E[A | B] = &

[A1{B}]
E[

(5] to obtain:

E[}/i,tJrh ’ Y;‘,t = yjaXt] = E[Yz',wrh(gj_l(yja Xt)) ‘ Xt}-
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Taking partial derivative w.r.t. y;, exchanging derivative/expectation and applying the chain

rule yields:

9, o) _
o Elicen | Vie = 1. X] = E[a—%n,Hm X)) | X
; Y 097 (y:, X
_ E[aYz,gh(wy) 9; (y5, X4) ’Xt:|-
w; 0y,

A1.2 Proof of theorem 2

Y, € R¥ admits a structural Wold representation

Vi=> UWie > ¥ < oo,
=0 £=0

where {W, }ez are 1.i.d. N(0, ;). Fix 4,5 € {1,...,k} and a horizon h > 0. Write the i-th
component at horizon h as

Yiien = [Ynli; Wi + Ristn,

where

k
Rivin =Y [WnlimWont + > [ WelimWontin—r

m#j l#h m=1
Because the innovations are i.i.d. Gaussian, W;, is independent of R; ;. (uncorrelated jointly
Gaussian variables are independent). Applying the definition of potential outcomes yields:
Yiirn(wj) = [Whli; w; + Ri i

Mean impulse response (IR):

Taking expectations yields:
EYieen(w))] = E[Ripon + [Ynlijws] = E[Rigen] + [Walij w;.

Differentiating w.r.t. w; yields:
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() = LR )

Conditional mean impulse response (cIR):
Let X; be any vector of covariates measurable with respect to past and current information.

Using the structural Wold representation,

Y i (wj, r) = [\I/h]z',j w; + Ritin(x),

where R; 5 (x) collects all terms independent of W .

E[Y: tn(wj, )] = [Valij wj + E[R g0 (2)].

Differentiating with respect to w; gives

OE[Yir4n(w), )]

8wj

cIR(h) = = [W);

Quantile impulse response (QIR):

Qh<7— ’ w]) = q}/i7t+h(w]')<7— | WtJ == wj>
— QR¢,t+h+[‘1’h]i,jw]- (7- | Wt’j = wj)
= QRi,t+h(T | Wt,j = wj) + [\I/h]i,jwj

= QR oy (T) + [Vh]ijw;

The first equivalence is stated to remind the reader of a notational short-cut used
throughout the paper. The first equality sign follows from the formula for the potential
outcome. The second equality sign follows from the fact that [¥},]; ;w; is a constant and so it

can go outside of the quantile function. The last equality sign follows from the independence
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of VVJ"t w.r.t Ri,t+h~
Differentiating w.r.t. w; yields:

_ (7 [ Wys = wy)
8w]~

QIR, (k)

= [Wnliy-

Therefore QIR (h) = [¥,];; for all 7 € (0,1).
Conditional quantile impulse response (cQIR):

Let X; be any vector measurable w.r.t. past and current observables.

(T | Wi, ) = Gy, w0 (T | Wie = wy, Xy = )
= 4R, 1 p+[Vh]i,j w; (7_ | VVj,t = Wy, Xt = (L’)
= QRi,H—h(T | VVj,t = wy, X = I) + [\Ijh]i,j w;j

=R, (T | Xo = 1) + [Wh]s 5 w;

The first equivalence is stated to remind the reader of a notational short-cut used
throughout the paper. The first equality substitutes the formula for the potential outcome.
The second equality sign follows from the fact that [U}]; jw; is a constant and so it can go
outside of the quantile function. The last equality sign follows from the independence of W,
Wt [

Differentiating w.r.t. w; yields:
QIR () = LTI W = w0y Xe = 0) gy

3wj

Therefore cQIR,(h) = [V4];; for all 7 € (0, 1).
This completes the proof that cIR(h) = IR(h) = QIR.(h) = cQIR,(h) Vh and V7 .
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A1.3 Proof of theorem 3
I reformulate the theorem 3 from Powell 2020 in my setting. First, I want to show: P[Y; 15 <
(T Y;) | Vi, XJ'] = PYisen < qu(7 | Yie) | X;']. Evaluating the left hand side of the

equality yields:

PYiiin < an(m | Yie) | Vi, X' 1 = PYirrn(Yie) < an(7 | Yin) | Yo, X/
= ]P’[Yzml(y]) < qn(7 | y]) ‘ Jt7XT]

=PYien(y;) < an(t | ys) | X/

The first equality sign follows from the definition of a potential outcome. The second equality
sign comes from the rank similarity assumption 7 which must hold for all d, d’" and thus also
for d = Yj;. The third equality sign follows from the conditional (on X;) independence of Y},

which follows from assumptions 3 and 5. Evaluating the right hand side of the equality yields:

PYien < qn(7 | Yie) | X)) = PYisn (Vo) < an(7 | Vi) | X/]

zt+h < Qh(T | t) | X:’Y}J]dP(YN | XtT)

Yien(yi) < an(r 1y5) | Ve, X[ JdP(Yie | X))

\\

=P[Viesn(y;) < an(7 | y5) | X/'].

The first equality follows from the definition of a potential outcome. The third equality
follows from the rank similarity assumption 7. The second and fourth equality follow directly

from properties of marginal probability functions.
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Now I want to show: P[Y; ;1 < qn(7| Yje)] = 7.

PV < (7 | Yi)] = / PYin(Vi) < anl(r | Vi) | XJ Y dP(X),Y;0)
- / PYViern(yy) < an(7 | 93) | X7,V JdP(X),Y;0)

= P[}/@H—h(yj) < qh(T | y])]

=T

The second equality follows from the rank similarity assumption 7. The fourth equality

follows from assumption 6.
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A2 Bootstrap algorithm

1. Bootstrap Setup: Initialize B bootstrap replications and create empty storage for

parameter estimates of interest.

2. Block Resampling Loop: For each bootstrap replication b = 1,..., B, randomly select
starting positions and construct blocks of M consecutive observations to create a pseudo-

sample of size T that preserves temporal dependence.

3. Model Estimation: Re-estimate the econometric model on each bootstrap pseudo-sample

and extract the parameter estimates of interest.

4. Bootstrap Storage: Store the difference between each bootstrap estimate and the original

sample estimate: Bh(T)b — Bh(T) for bootstrap replication b.

5. Confidence Interval Construction: Compute the standard deviation of the B bootstrap

estimates and construct normal-based confidence intervals as:

Cl = Bh(T) + Zaj2 X SEbootstrap<Bh<T))

where SEyootsrap(54(7) = /5 Sy (u(7)s — Bu(7)2.
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A3 Monte Carlo results - endogenous volatility SVAR

Quantile Horizon QLP no controls QLP with controls GQLP
Mean Bias RMSE | Mean Bias RMSE | Mean Bias RMSE

1 -0.840 0.886 | -0.176 0.194 | 0.000 0.197

2 -0.981 1.064 | -0.148 0.237 | -0.002 0.302

3 -1.079 1.204 | -0.113 0.307 | -0.002 0.405

4 -1.143 1.310 | -0.083 0.381 | 0.003 0.496

0.1 5 -1.170 1.381 | -0.064 0.464 | 0.007 0.584
' 6 -1.174 1.431 | -0.052 0.551 | 0.012 0.657
7 -1.161 1.477 | -0.029 0.620 | 0.027 0.716

8 -1.173 1.530 | -0.040 0.672 | -0.001 0.766

9 -1.160 1.569 | -0.016 0.728 | 0.018 0.834

10 -1.162 1.600 | -0.020 0.776 | 0.017 0.875

1 -0.628 0.646 | -0.010 0.061 | -0.002 0.108

2 -0.779 0.809 | -0.026 0.128 | -0.002 0.166

3 -0.857 0.903 | -0.034 0.187 | -0.005 0.212

4 -0.900 0.956 | -0.029 0.235 | 0.001 0.261

0.5 5 -0.930 0.999 | -0.027 0.273 | -0.003 0.302
6 -0.948 1.029 | -0.032 0.320 | -0.001 0.338

7 -0.968 1.065 | -0.044 0.358 | -0.006 0.377

8 -0.971 1.083 | -0.022 0.391 | -0.005 0.393

9 -0.980 1.108 | -0.024 0.411 | -0.005 0.426

10 -0.974 1.119 -0.017 0.442 -0.007 0.455

1 -0.537 0.559 | 0.183 0.198 | -0.014 0.145

2 -0.640 0.674 | 0.172 0.230 | -0.019 0.206

3 -0.694 0.740 | 0.153 0.268 | -0.023 0.259

4 -0.740 0.797 | 0.109 0.295 | -0.025 0.308

0.9 5 -0.755 0.825 | 0.090 0.336 | -0.026 0.345
' 6 -0.774 0.865 | 0.074 0.377 | -0.030 0.397
7 -0.781 0.891 | 0.061 0.407 | -0.020 0.434

8 -0.777 0.908 | 0.062 0.444 | -0.015 0.464

9 -0.792 0.942 | 0.037 0.476 | -0.026 0.496

10 -0.803 0.967 | 0.037 0.509 | -0.034 0.527

Table 4: Simulation results for the cumulative QIR of the illustrative example (complementing
Figure 3 in the main text). The “true” QIR to which the estimators were compared
with is in fact a linear approximation obtained from the quantile local projection model
Yien = an(Uigsn) + Bn(Uirsn) Wi The true QIR was obtained by averaging the estimated
Bn(T) over the Monte Carlo replications. RMSE is the root mean squared error. QLP refers to
the quantile local projection framework which uses the Koenker and Bassett 1978 estimator,
GQLP uses the generalized quantile regression estimator introduced by Powell 2020. Results
are from MC = 1,000 simulation replications, with a time-series of length 7" = 500 (after
dropping 1,000 initial observations).
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A4 Empirical results - additional figures and tables
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Figure 12: Monthly time-series from January 1984 to June 2025. Grey bands indicate NBER
recession dates. The series in the bottom panels have been normalized.
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Figure 13: Cumulative response of Industrial Production (in % pts.) from a shock that
increases credit (top panels) or volatility (bottom panels) risk by one standard deviation,
plotted for three quantiles 7 € {0.1¢,0.50,0.92}. Y-axis is the estimated response Bh(r),
x-axis is the horizon A in months. Dashed lines plot the quantile impulse response. Note that
the impact response (horizon h = 0) is by assumption zero when the shock is ordered after
the dependent variable.
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